A Study on Improving the Crystallization Rate of Poly (Ethylene Terephthalate)

1985 ◽  
Vol 32 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Leo-Wang Chen ◽  
Wen-Yen Chiu ◽  
Wei-Ching Yu
RSC Advances ◽  
2017 ◽  
Vol 7 (59) ◽  
pp. 37139-37147 ◽  
Author(s):  
Diran Wang ◽  
Faliang Luo ◽  
Zhiyuan Shen ◽  
Xuejian Wu ◽  
Yaping Qi

In order to overcome low crystallization rate of PET, HPN-68L was selected to replace the special nucleate agent of PET to improve PET crystallization for its carboxylate anion structure which usually showed high induced nucleation ability for PET.


1993 ◽  
Vol 321 ◽  
Author(s):  
Veronika E. Reinsch ◽  
Ludwig Rebenfeld

ABSTRACTBlends of poly (ethylene terephthalate), or PET, and polycarbonate (PC) over a range of compositions were studied in isothermal crystallizations from the melt using differential scanning calorimetry (DSC). Both crystallization rate and degree of crystallinity of PET depend on blend composition. The glass transition temperature, Tg, of PET and PC in blends and pure polymer were also measured by DSC. Elevation of the Tg of PET and depression of the Tg of PC are observed upon blending. In cooling scans, dynamic crystallization from the melt was observed. In PET/PC blends with high PC content, a novel dual-peak crystallization of PET was observed. The effects of thermal history on crystallization kinetics and degree of crystallinity were also determined in isothermal crystallization studies. For Melt processing times between 1 and 30 Min and for processing temperatures between 280 and 300 °C, Melt processing temperature was seen to have a stronger effect than processing time.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2266
Author(s):  
Yue Yin ◽  
Yuan Wang ◽  
Linghui Meng

In this study, not only was the similar terephthalate structure between UIO-66 and PET utilized to improve compatibility, but the Zr4+ exposed by defects of UIO-66 was also utilized to improve the interaction between PET and UIO-66. Furthermore, PET nanocomposites with different contents of UIO-66 were also fabricated. Due to the high specific surface area and coordination of Zr4+, UIO-66 has high nucleation efficiency in the PET matrix. Compared with pure PET, the crystallization rate of PET/UIO-66 nanocomposite is significantly increased, and the crystallization temperature of PET-UIO66-1 is significantly increased from 194.3 °C to 211.6 °C. In addition, the tensile strength of nanocomposites has also been improved due to coordination.


Polymer Korea ◽  
2018 ◽  
Vol 42 (5) ◽  
pp. 788-792 ◽  
Author(s):  
Su Jung Cho ◽  
Kyeong Mun Kim ◽  
Kwang Hee Lee

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3053
Author(s):  
Shichang Chen ◽  
Shangdong Xie ◽  
Shanshan Guang ◽  
Jianna Bao ◽  
Xianming Zhang ◽  
...  

Three kinds of modified poly(ethylene terephthalate) (PET) were prepared by solution blending combined with melt post-polycondensation, using 4,4′-thiodiphenol (TDP), 4,4′-oxydiphenol (ODP) and hydroquinone (HQ) as the bisphenols, respectively. The effects of TDP, ODP and HQ on melt post-polycondensation process and crystallization kinetics, melting behaviors, crystallinity and thermal stability of PET/bisphenols complexes were investigated in detail. Excellent chain growth of PET could be achieved by addition of 1 wt% bisphenols, but intrinsic viscosity of modified PET decreased with further bisphenols content. Intermolecular hydrogen bonding between carbonyl groups of PET and hydroxyl groups of bisphenols were verified by Fourier transform infrared spectroscopy. Compare to pure PET, both the crystallization rate and melting temperatures of PET/bisphenols complexes were reduced obviously, suggesting an impeded crystallization and reduced lamellar thickness. Moreover, the structural difference between TDP, ODP and HQ played an important role on crystallization kinetics. It was proposed that the crystallization rate of TDP modified PET was reduced significantly due to the larger amount of rigid benzene ring and larger polarity than that of PET with ODP or HQ. X-ray diffraction results showed that the crystalline structure of PET did not change from the incorporation of bisphenols, but crystallinity of PET decreased with increasing bisphenols content. Thermal stability of modified PET declined slightly, which was hardly affected by the molecular structure of bisphenols.


2008 ◽  
Vol 1151 ◽  
Author(s):  
Matsumoto Osamu ◽  
Hotta Atsushi

ABSTRACTPoly (cyclohexanedimethanol cyclohexanedicarboxlic acid) (PCC), a fairly newly synthesized polyester, has been studied. Having a good experience of increasing both thermal stability and service temperature when applied to typical polymers, poly (tetramethylene glycol) (PTMG) was selected as a softening agent that was randomly copolymerized into the PCC chains. Another widely-used polyester, poly (ethylene terephthalate) (PET) was also produced in order to investigate the effect of PTMG, which was compared with the properties of the newly developed random PCC-PTMG copolymers (PCCP). In this study, the crystalline structures, the thermal and the mechanical properties of both PCC and PET containing different ratios of the random segment of PTMG were investigated by differential scanning calorimetery (DSC) and tensile tester.It was found that the crystallization rate of pure PCC was significantly slow, whereas for PCCP, PTMG effectively accelerated the crystallization rate with increasing PTMG, and the sample with 25 wt% of PTMG had the fastest crystallization rate in all PCCP samples. Here, the PTMG acted as an accelerator, simultaneously depressing the movement of PCC molecular chains. The elastic recovery test indicated that the ability of PTMG as a softening agent was highly demonstrated at 20 wt% of PTMG. The results of PCCP were compared with those of PET-PTMG copolymers (PETP) and it was found that there were optimum values of PTMG for the crystallization rate on both samples. Additionally, the results of the elastic recovery test indicated that the softening effects observed in PCCP were more pronounced than those observed in PETP.


2011 ◽  
Vol 239-242 ◽  
pp. 3198-3206 ◽  
Author(s):  
Zhao Hui Jiang ◽  
Jian Jin ◽  
Chang Fa Xiao ◽  
Xin Li

Poly(Ethylene Terephthalate)(PET)/carbon black(CB) composite was prepared by melt blending using a separate feeding technique. The non-isothermal crystallization process of virgin PET and PET/CB composite were investigated by differential scanning calorimetry (DSC) and the different methods such as Jeziorny modified Avrami equation, Ozawa equation and the method developed by Mo were employed to analyze the non-isothermal kinetics of virgin PET and PET/CB composite. The results show that the CB particles dispersed in PET matrix act as heterogeneous nucleating agents, while CB particles hinder the movement of molecular chains of PET, meanwhile, the crystallization activation energy(⊿E) of PET/CB composite is much greater than that of virgin PET according to Kissinger formula, which is opposite to the low CB content condition. This indicates that CB particles reduce the rate of crystal growth. Whereas, the results obtained from the mentioned three methods simultaneously demonstrate the addition of CB greatly increases crystallization temperature and crystallinity and accelerates crystallization rate. Taking the two seemingly contradictory results, crystal growth has little effect on the crystallization rate and crystal nucleation dominate the crystallization process of PET/CB composite with very high CB content. According to Jeziorny method, the constant of crystallization rate (Zc) increases with the increment of cooling rate and Avrami index (n) doesn’t change significantly, but the Zc and n of PET/CB composite are greater than that of PET. Based on Ozawa method, lg[-ln(1-Xt)] and lgR don’t show a good linear relationship. The parameter F(T) increases significantly with the increasing of relative crystallinity and n is almost unchanged. Besides, the F(T) of PET/CB composite is less than that of PET, while a is greater than that of PET. Comparing with Ozawa and Avrami equation, Mo method can better describe the non-isothermal crystallization of PET and PET/CB composite.


2018 ◽  
Vol 31 (2) ◽  
pp. 211-219 ◽  
Author(s):  
Qiu-xia Wang ◽  
Fu-chen Zhang ◽  
De-zhi Qu ◽  
Yong-ping Bai

In this study, the preparation and properties of poly(ethylene terephthalate-co-2-methyl-1,3-propanediol) copolyester (PEMT) were reported. The PEMT crystallization properties, optical properties, thermal properties, rheological properties, and other properties were characterized by nuclear magnetic resonance (1H NMR), differential scanning calorimetry, thermo gravimetric analysis, ultraviolet visible near-infrared (UV-VIS-NIR) spectroscopy, polarizing microscope crystal culture, X-ray diffraction (XRD), and rheometer. It was proved that the crystallization abilities and crystallization rate of PEMT copolyesters were significantly affected by the content of 2-methyl-1,3-propanediol (MPO) units; the copolyester becomes amorphous when the content of MPO units exceeded 20 mol%. According to the XRD data, the diffraction peaks of PEMT remained unchanged compared with those of poly(ethylene terephthalate). The transmittance of copolyesters displayed a tendency of increasing at first and then declining with the increase in MPO. In addition to the crystallization properties, the transmittance of copolyesters was also affected by the extent of yellowing. When the MPO addition was less than 20 mol%, PEMT can maintain good thermal decomposition performance and processability.


Sign in / Sign up

Export Citation Format

Share Document