Preparation of NiO/MWNTs Nanocomposites by a Simple Chemical Precipitation Method

2009 ◽  
Vol 56 (3) ◽  
pp. 475-479 ◽  
Author(s):  
Xiao-Ning Liao ◽  
Chang-Yuan Hu ◽  
Qiao-Ling Wang ◽  
Feng-Yi Li
2012 ◽  
Vol 463-464 ◽  
pp. 533-537 ◽  
Author(s):  
Shui Sheng Wu ◽  
Ya Ming Wang ◽  
Qing Ming Jia ◽  
Li Li Gu ◽  
Yan Lin Sun

A well-organized composite of graphene nanosheets decorated with FeC2O4 particles was synthesized through a simple chemical precipitation method. The FeC2O4 nanoparticles obtained were 100-150 nm in size and homogeneously anchored on graphene sheets as spacers to keep the neighboring sheets separated. The FeC2O4-graphene exhbited excellent performances in absorption propties and supercapacitor make potential uses as environment and energy storage materials in future.


2016 ◽  
Vol 675-676 ◽  
pp. 138-141 ◽  
Author(s):  
Natpasit Chaithanatkun ◽  
Korakot Onlaor ◽  
Thutiyaporn Thiwawong ◽  
Benchapol Tunhoo

In this work, zinc oxide (ZnO) nanoparticles were synthesized by simple chemical precipitation method in the present of zinc nitrate as zinc precursor and sodium hydroxide as hydroxide precursor. The vitamin C was used as modifier media to modify the structural properties of ZnO nanoparticles. The microstructures of ZnO nanoparticles were characterized by field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). Selected area electron diffraction (SAED) patterns showed that polycrystalline hexagonal phase of ZnO. The defects and impurity contents in nanoparticles were investigated by Fourier transform infrared (FT-IR) spectroscopy. The results show few carboxylate and hydroxyl impurities for larger particles when addition modifier increases. Surface areas of nanoparticles were measured by Brunauer Emmett Teller (BET) method. In addition, the results exhibited the dramatically change in structural properties of ZnO nanoparticles due to the effect of vitamin C.


2021 ◽  
Author(s):  
Jie Li ◽  
Yuruo Qi ◽  
Fangyuan Xiao ◽  
Shu-Juan Bao ◽  
Mao-Wen Xu

In this work, the nanoflower-like Na0.5VOPO4·2H2O with a large interlayer distance of 6.5295 Å is synthesized via a simple chemical precipitation method at room temperature. It is the first time...


RSC Advances ◽  
2015 ◽  
Vol 5 (56) ◽  
pp. 45407-45415 ◽  
Author(s):  
R. Poonguzhali ◽  
N. Shanmugam ◽  
R. Gobi ◽  
A. Senthilkumar ◽  
R. Shanmugam ◽  
...  

Herein, we suggest a simple chemical precipitation method for the preparation of bare and different levels of Zn doped MnO2 nanoparticles as electrodes for supercapacitors.


2020 ◽  
Vol 10 ◽  
Author(s):  
Manish Dwivedi ◽  
Vijay Tripathi ◽  
Dhruv Kumar ◽  
Dwijendra K. Gupta

Aims: CdS nanoparticles are an attractive material having application in various field like as pigment in paints, biotag for bioimaging and many more optoelectronic as well as biological applications. Present study aims to synthesize and characterize the CdS nanoparticles to make it applicable in different areas Objectives: Preparation CdS nanoparticles by using simple and facile chemical methods and further physical and structural characterization using various physical tools Methods: In present work CdS nanoparticles has been synthesized by using rationally simple chemical precipitation method with some modi-fication on temperature and incubation time in existed methods. Characterizations were done by employing XRD, SEM, TEM, AFM tech-niques Results: Simple chemical method produces the CdS nanoparticles with the size about 100-200 nm in length and 5-10 nm in diameter. The SEM studies show that the CdS nanoparticles can agglomerate and form a continuous network like structure. The X-ray diffraction (XRD) measurements show the single-phase formation of CdS nanoparticles with the structure of cubic phase, and the broadening of XRD patterns indicates that the prepared samples are nanostructured. Our analysis on CdS nanoparticles by using transmission electron microscope and atomic force microscope (AFM) revealed that the nanoparticles form both spherical and nearly rod shaped with the average size applicable for biotagging. UV-Vis spectroscopic analysis reveals blue shift in the absorption peak probably caused by quantum confinement Conclusion: The observed CdS nanoparticles were appeared yellow in color. The XRD pattern of the CdS nanoparticles showed that the materials were of nanometric sized regime with a predominantly cubic phase along with the rod and round morphology. The study and char-acterization of CdS nanoparticles will bring us a new approach to understand biological problem by tagging nanoparticles with biomolecules and further suggests that the CdS nanoparticles formulate it more suitable biocompatible nanomaterial for biotagging and bioimaging


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 788
Author(s):  
Beibei Zhang ◽  
Lu Zhang ◽  
Yulong Zhang ◽  
Chao Liu ◽  
Jiexiang Xia ◽  
...  

In this work, a simple chemical precipitation method was employed to prepare spherical-like Ag3PO4 material (IL-Ag3PO4) with exposed {111} facet in the presence of reactive ionic liquid 1-butyl-3-methylimidazole dihydrogen phosphate ([Omim]H2PO4). The crystal structure, microstructure, optical properties, and visible-light photocatalytic performance of as-prepared materials were studied in detail. The addition of ionic liquids played a crucial role in forming spherical-like morphology of IL-Ag3PO4 sample. Compared with traditional Ag3PO4 material, the intensity ratio of {222}/{200} facets in XRD pattern of IL-Ag3PO4 was significantly enhanced, indicating the main {111} facets exposed on the surface of IL-Ag3PO4 sample. The presence of exposed {111} facet was advantageous for facilitating the charge carrier transfer and separation. The light-harvesting capacity of IL-Ag3PO4 was larger than that of Ag3PO4. The photocatalytic activity of samples was evaluated by degrading rhodamine B (RhB) and p-chlorophenol (4-CP) under visible light. The photodegradation efficiencies of IL-Ag3PO4 were 1.94 and 2.45 times higher than that of Ag3PO4 for RhB and 4-CP removal, respectively, attributing to a synergy from the exposed {111} facet and enhanced photoabsorption. Based on active species capturing experiments, holes (h+), and superoxide radical (•O2−) were the main active species for visible-light-driven RhB photodegradation. This study will provide a promising prospect for designing and synthesizing ionic liquid-assisted photocatalysts with a high efficiency.


Sign in / Sign up

Export Citation Format

Share Document