The picric acid removal from aqueous solutions by multi‐walled carbon nanotubes/ EDTA /carboxymethylcellulose nanocomposite: Central composite design optimization, kinetic, and isotherm studies

Author(s):  
Mina Azadfar ◽  
Hasan Tahermansouri ◽  
Mahnaz Qomi
2019 ◽  
Vol 107 (5) ◽  
pp. 377-386 ◽  
Author(s):  
Cansu Endes Yılmaz ◽  
Mahmoud A.A. Aslani ◽  
Ceren Kütahyalı Aslani

Abstract Adsorption of thorium onto nitric acid modified multi-walled carbon nanotubes was investigated by central composite design as a function of contact time, pH, initial thorium concentration and temperature. The results showed that optimum uptake capacity was 65.75±2.23 mg·g−1 with respect to pH=4, initial thorium concentration of 100 mg·L−1, 25 °C and 15 min contact time. Thermodynamic parameters [standard enthalpy (ΔH0), entropy (ΔS0), and free energy (ΔG0)] were calculated, and the results indicated that adsorption was endothermic. Langmuir, Freundlich and Dubinin-Radushkevich isotherms have been investigated in order to characterize the adsorption process in the range of 25–100 mg·L−1 initial thorium concentration. The Freundlich isotherm is the best suited as a model because it has the highest correlation coefficient (R2=0.9485). The pseudo-second order kinetics well defined the adsorption process.


2014 ◽  
Vol 70 (6) ◽  
pp. 964-971
Author(s):  
Xu Chen ◽  
Zhen-hu Xiong

Magnetic multi-wall carbon nanotubes (M-MWCNTs) were used as an adsorbent for removal of furaltadone from aqueous solutions, and the adsorption behaviors were investigated by varying pH, sorbent amount, sorption time and temperature. The results showed that the adsorption efficiency of furaltadone reached 97% when the dosage of M-MWCNT was 0.45 g · L−1, the pH was 7 and the adsorption time was 150 min. The kinetic data showed that the pseudo-second-order model can fit the adsorption kinetics. The sorption data could be well explained by the Langmuir model under different temperatures. The adsorption process was influenced by both intraparticle diffusion and external mass transfer. The experimental data analysis indicated that the electrostatic attraction and π–π stacking interactions between M-MWCNT and furaltadone might be the adsorption mechanism. Thermodynamic analysis reflected that adsorption of furaltadone on the M-MWCNT was spontaneous and exothermic. Our study showed that M-MWCNTs can be used as a potential adsorbent for removal of furaltadone from water and wastewater.


Sign in / Sign up

Export Citation Format

Share Document