An improved method for primary culture of normal cervical epithelial cells and establishment of cell model in vitro with HPV-16 E6 gene by lentivirus

2017 ◽  
Vol 233 (4) ◽  
pp. 2773-2780 ◽  
Author(s):  
Tingting Fan ◽  
Xiaofu Li ◽  
Ya Li ◽  
Yanfang Zhi ◽  
Shouhua Rong ◽  
...  

1993 ◽  
Vol 4 (6) ◽  
pp. 342-345 ◽  
Author(s):  
S L Patrick ◽  
T C Wright ◽  
H E Fox ◽  
H S Ginsberg

Women are infected with HIV in increasing numbers; the predominant mode of spread is through heterosexual transmission. Little is known regarding the mechanism of HIV transit through the female genital tract. We investigated whether early passaage cervical epithelial cells could be directly infected with HIV-1LAI*. Virus production was measured using the reverse transcriptase (RT) assay and direct assay for syncytia-forming units. In-situ hybridization was performed on infected cervical cell cultures. Immunostaining was carried out using a monoclonal antibody to leukocyte common antigen (LCA). Virus was recovered in the supernatants of all infected cervical cultures. Localization of HIV infection using in-situ hybridization identified rare cells in the population which gave a strong signal. These infected cells had a lymphoid morphology and were also detected using immunostaining for LAC. Cervical epithelial cells were uninfected in this in vitro model; cells in this population which supported viral replication were most likely of the macrophage/monocyte lineage.



Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 760 ◽  
Author(s):  
Radhakrishnan Vishnubalaji ◽  
Hibah Shaath ◽  
Nehad M. Alajez

The global spread of COVID-19, caused by pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for an imminent response from medical research communities to better understand this rapidly spreading infection. Employing multiple bioinformatics and computational pipelines on transcriptome data from primary normal human bronchial epithelial cells (NHBE) during SARS-CoV-2 infection revealed activation of several mechanistic networks, including those involved in immunoglobulin G (IgG) and interferon lambda (IFNL) in host cells. Induction of acute inflammatory response and activation of tumor necrosis factor (TNF) was prominent in SARS-CoV-2 infected NHBE cells. Additionally, disease and functional analysis employing ingenuity pathway analysis (IPA) revealed activation of functional categories related to cell death, while those associated with viral infection and replication were suppressed. Several interferon (IFN) responsive gene targets (IRF9, IFIT1, IFIT2, IFIT3, IFITM1, MX1, OAS2, OAS3, IFI44 and IFI44L) were highly upregulated in SARS-CoV-2 infected NBHE cell, implying activation of antiviral IFN innate response. Gene ontology and functional annotation of differently expressed genes in patient lung tissues with COVID-19 revealed activation of antiviral response as the hallmark. Mechanistic network analysis in IPA identified 14 common activated, and 9 common suppressed networks in patient tissue, as well as in the NHBE cell model, suggesting a plausible role for these upstream regulator networks in the pathogenesis of COVID-19. Our data revealed expression of several viral proteins in vitro and in patient-derived tissue, while several host-derived long noncoding RNAs (lncRNAs) were identified. Our data highlights activation of IFN response as the main hallmark associated with SARS-CoV-2 infection in vitro and in human, and identified several differentially expressed lncRNAs during the course of infection, which could serve as disease biomarkers, while their precise role in the host response to SARS-CoV-2 remains to be investigated.





2001 ◽  
Vol 75 (9) ◽  
pp. 4467-4472 ◽  
Author(s):  
Tim Veldman ◽  
Izumi Horikawa ◽  
J. Carl Barrett ◽  
Richard Schlegel

ABSTRACT The E6 and E7 oncogenes of human papillomavirus type 16 (HPV-16) are sufficient for the immortalization of human genital keratinocytes in vitro. The products of these viral genes associate with p53 and pRb tumor suppressor proteins, respectively, and interfere with their normal growth-regulatory functions. The HPV-16 E6 protein has also been shown to increase the telomerase enzyme activity in primary epithelial cells by an unknown mechanism. We report here that a study using reverse transcription-PCR and RNase protection assays in transduced primary human foreskin keratinocytes (HFKs) shows that the E6 gene (but not the E7 gene) increases telomerase hTERT gene transcription coordinately with E6-induced telomerase activity. In these same cells, the E6 gene induces a 6.5-fold increase in the activity of a 1,165-bp 5′ promoter/regulatory region of the hTERT gene, and this induction is attributable to a minimal 251-bp sequence (−211 to +40). Furthermore, there is a 35-bp region (+5 to +40) within this minimal E6-responsive promoter that is responsible for 60% of E6 activity. Although the minimal hTERT promoter contains Myc-responsive E-box elements and recent studies have suggested a role for Myc protein in hTERT transcriptional control, we found no alterations in the abundance of either c-Myc or c-Mad in E6-transduced HFKs, suggesting that there are other or additional transcription factors critical for regulating hTERT expression.



1997 ◽  
Vol 75 (6) ◽  
pp. 855-859 ◽  
Author(s):  
G Castrilli ◽  
D Tatone ◽  
MG Diodoro ◽  
S Rosini ◽  
M Piantelli ◽  
...  


2019 ◽  
Vol 31 (1) ◽  
pp. 158
Author(s):  
M. Sponchiado ◽  
W. F. A. Marei ◽  
P. E. J. Bols ◽  
M. Binelli ◽  
J. L. M. R. Leroy

We optimized a bovine endometrial epithelial cell (BEEC) line as a valuable research model for the study of very early embryo-maternal interactions in vitro. In this study, we aimed to (1) characterise the BEEC monolayers along the primary culture and first passages with respect to the expression of epithelial and mesenchymal cell markers and abundance of functional key transcripts; (2) to test whether direct or indirect contact with endometrial cells alter the quality of the embryos in vitro; and (3) to test the specificity of the effect. In Exp. 1, after isolation from slaughterhouse uteri at the early luteal phase, BEEC were cultured in DMEM/F12 phenol red-free medium supplemented with 10% fetal bovine serum (FBS) from primary culture until subculture 3. Fixed samples were immunostained for cytokeratin and vimentin. Transcript abundances for cellular lineage markers (KRT18 and VIM), oestrogen receptor (ESR1), interferon α/beta receptor 1 (IFNAR1), and prostaglandin G/H synthase 1 (PTGS1) and 2 (PTGS2) were evaluated by real-time quantitative PCR. Statistical analyses were carried out by ANOVA and Tukey test. Immunofluorescence data revealed that the BEEC line co-expresses cytokeratin together with a mesenchymal marker (Vimentin). This indicates that these epithelial cells underwent an epithelial-mesenchymal transition in vitro. Gene expression data showed a 6-fold increased (P<0.001) abundance of VIM mRNA from the primary culture to the subculture 1, which remained constant until subculture 3; however, KRT18, ESR1, IFNAR1, PTGS1, and PTGS2 were similar between the passages, suggesting that the cells conserved their functional characteristics. In Exp. 2, groups of 15 morulas (Day 5.5) were cultured in SOF medium supplemented with 5% FBS in the absence (control) or in the presence (co-culture) of BEEC at passage 2, for 48h. Embryos were placed on direct or indirect contact with a BEEC monolayer using a 96-well insert containing 8μm pores. Developmental rates were compared by chi-square test and P-values were adjusted by Tukey’s test. The percentage of embryos that had developed from morula into blastocyst stage on Day 7.5 was significantly higher in the direct and indirect contact co-culture (65%; P<0.05) groups compared with the control (53%) group. Moreover, 63% of the blastocysts were expanded, hatching, or hatched in the co-culture groups, whereas a rate of 46% was found in the control counterparts (P<0.05). In Exp. 3, the same experimental conditions from Exp. 2 were used, but groups of 15 Day 5.5 morulas were cultured in control, or conditioned medium from BEEC (CondBEEC) or bovine fibroblasts (CondFib). Blastocyst development rate on Day 7.5 was higher in the CondBEEC group (71%; P<0.001) compared with the control (54%) and CondFib (50%) groups. In conclusion, based on the markers studied, BEEC monolayers undergo epithelial-mesenchymal transition in vitro but preserve functional characteristics after few passages. The co-culture system improves bovine embryonic development from morula into blastocyst stage. This support is BEEC specific and does not rely on a direct cell-to-embryo contact.



2004 ◽  
Vol 16 (9) ◽  
pp. 229 ◽  
Author(s):  
D. J. Sharkey ◽  
S. A. Robertson

Exposure to semen at intercourse in women elicits an inflammation-like response characterised by recruitment of inflammatory cells and expression of pro-inflammatory cytokines including GM-CSF, interleukin-6 (IL-6) and IL-8 (1). Studies in animal models have implicated TGFβ as the major active moiety in seminal plasma, and we have shown previously that TGFβ1 and TGFβ3 are present in high concentrations in human seminal plasma (>100 ng/mL), while TGFβ2 is less abundant. To investigate the physiological significance of each of the three TGFβ isoforms as pro-inflammatory agents in human seminal plasma, we have established in vitro model systems to measure human cervical cell cytokine synthesis. Primary cervical epithelial cells prepared from ectocervix of hysterectomy tissues or transformed Ect1 cells were incubated for 12 h with human recombinant TGFβ (isoforms 1, 2 or 3) or with seminal plasma in the presence or absence of isoform-specific TGFβ neutralising antibodies. Epithelial cell supernatants were recovered 24 h later and supernatants were analysed by commercial ELISA to quantify GM-CSF, IL-6 and IL-8 production. Each of the three TGFβ isoforms mimicked seminal plasma and were comparable in their capacity to stimulate >10-fold increases in both GM-CSF and IL-6 expression in a dose-responsive manner. In contrast, unlike seminal plasma none of the TGFβ isoforms induced IL-8 expression. Addition of neutralising antibodies to TFGβ1, TGFβ2 and TGFβ3 each effected >50% reduction in the ability of seminal plasma to induce GM-CSF and IL-6, but did not impair seminal plasma-stimulated IL-8 production. Together these data show that TGFβ1, TGFβ2 and TGFβ3 are major active constituents of seminal plasma, acting to elicit GM-CSF and IL-6 production in cervical epithelial cells. However, TGFβ does not fully account for the pro-inflammatory effects of human seminal plasma, and other active constituents remain to be identified. (1) D. J. Sharkey et al. (2003) Proc. SRB.



2002 ◽  
Vol 115 (4) ◽  
pp. 713-724
Author(s):  
Isabelle Runembert ◽  
Guillaume Queffeulou ◽  
Pierre Federici ◽  
François Vrtovsnik ◽  
Emma Colucci-Guyon ◽  
...  

It has been reported that vimentin, a cytoskeleton filament that is expressed only in mesenchymal cells after birth, is re-expressed in epithelial cells in vivo under pathological conditions and in vitro in primary culture. Whether vimentin re-expression is only a marker of cellular dedifferentiation or is instrumental in the maintenance of cell structure and/or function is a matter of debate. To address this issue, we used renal proximal tubular cells in primary culture from vimentin-null mice (Vim-/-) and from wild-type littermates (Vim+/+). The absence of vimentin did not affect cell morphology, proliferation and activity of hydrolases, but dramatically decreased Na-glucose cotransport activity. This phenotype was associated with a specific reduction of SGLT1 protein in the detergent-resistant membrane microdomains (DRM). In Vim+/+cells, disruption of these microdomains by methyl-β-cyclodextrin decreased SGLT1 protein abundance in DRM, a change that was paralleled by a decrease of Na-glucose transport activity. Importantly, we showed that vimentin is located to DRM, but it disappeared after methyl-β-cyclodextrin treatment. In Vim-/- cells,supplementation of cholesterol with cholesterol-methyl-β-cyclodextrin complexes completely restored Na-glucose transport activity. Interestingly,neither cholesterol content nor cholesterol metabolism changed in Vim-/- cells. Our results are consistent with the view that re-expression of vimentin in epithelial cells could be instrumental to maintain the physical state of rafts and, thus, the function of DRM-associated proteins.



Sign in / Sign up

Export Citation Format

Share Document