Influence of ferric iron dosing on aerobic granular sludge: granule formation, nutrient removal and microbial community

Author(s):  
Jinte Zou ◽  
Fengfan Yu ◽  
Jia Chen ◽  
Giorgio Mannina ◽  
Yongmei Li
Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1472
Author(s):  
Sara Toja Ortega ◽  
Mario Pronk ◽  
Merle K. de Kreuk

High concentrations of particulate COD (pCOD) in the influent of aerobic granular sludge (AGS) systems are often associated to small granule diameter and a large fraction of flocculent sludge. At high particulate concentrations even granule stability and process performance might be compromised. However, pilot- or full-scale studies focusing on the effect of real wastewater particulates on AGS are scarce. This study describes a 3-month period of increased particulate loading at a municipal AGS wastewater treatment plant. The pCOD concentration of the influent increased from 0.5 g COD/L to 1.3 g COD/L, by adding an untreated slaughterhouse wastewater source to the influent. Sludge concentration, waste sludge production and COD and nutrient removal performance were monitored. Furthermore, to investigate how the sludge acclimatises to a higher influent particulate content, lipase and protease hydrolytic activities were studied, as well as the microbial community composition of the sludge. The composition of the granule bed and nutrient removal efficiency did not change considerably by the increased pCOD. Interestingly, the biomass-specific hydrolytic activities of the sludge did not increase during the test period either. However, already during normal operation the aerobic granules and flocs exhibited a hydrolytic potential that exceeded the influent concentrations of proteins and lipids. Microbial community analysis also revealed a high proportion of putative hydrolysing and fermenting organisms in the sludge, both during normal operation and during the test period. The results of this study highlight the robustness of the full-scale AGS process, which can bear a substantial increase in the influent pCOD concentration during an extended period.


2017 ◽  
Vol 33 (3) ◽  
pp. 716-725 ◽  
Author(s):  
Gulsum Yilmaz ◽  
Ender Cetin ◽  
Umit Bozkurt ◽  
Karin Aleksanyan Magden

Author(s):  
Sara Toja Ortega ◽  
Mario Pronk ◽  
Merle K. de Kreuk

Abstract Complex substrates, like proteins, carbohydrates, and lipids, are major components of domestic wastewater, and yet their degradation in biofilm-based wastewater treatment technologies, such as aerobic granular sludge (AGS), is not well understood. Hydrolysis is considered the rate-limiting step in the bioconversion of complex substrates, and as such, it will impact the utilization of a large wastewater COD (chemical oxygen demand) fraction by the biofilms or granules. To study the hydrolysis of complex substrates within these types of biomass, this paper investigates the anaerobic activity of major hydrolytic enzymes in the different sludge fractions of a full-scale AGS reactor. Chromogenic substrates were used under fully mixed anaerobic conditions to determine lipase, protease, α-glucosidase, and β-glucosidase activities in large granules (>1 mm in diameter), small granules (0.2–1 mm), flocculent sludge (0.045–0.2 mm), and bulk liquid. Furthermore, composition and hydrolytic activity of influent wastewater samples were determined. Our results showed an overcapacity of the sludge to hydrolyze wastewater soluble and colloidal polymeric substrates. The highest specific hydrolytic activity was associated with the flocculent sludge fraction (1.5–7.5 times that of large and smaller granules), in agreement with its large available surface area. However, the biomass in the full-scale reactor consisted of 84% large granules, making the large granules account for 55–68% of the total hydrolytic activity potential in the reactor. These observations shine a new light on the contribution of large granules to the conversion of polymeric COD and suggest that large granules can hydrolyze a significant amount of this influent fraction. The anaerobic removal of polymeric soluble and colloidal substrates could clarify the stable granule formation that is observed in full-scale installations, even when those are fed with complex wastewaters. Key points • Large and small granules contain >70% of the hydrolysis potential in an AGS reactor. • Flocculent sludge has high hydrolytic activity but constitutes <10% VS in AGS. • AGS has an overcapacity to hydrolyze complex substrates in domestic wastewater. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document