Delineation of brain tumor margins using intraoperative sononavigation: Implications for tumor resection

2006 ◽  
Vol 34 (4) ◽  
pp. 177-183 ◽  
Author(s):  
Nobusada Shinoura ◽  
Masamichi Takahashi ◽  
Ryozi Yamada
Signals ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 304-335
Author(s):  
Aditi Deshpande ◽  
Thomas Cambria ◽  
Charles Barnes ◽  
Alexandros Kerwick ◽  
George Livanos ◽  
...  

This study investigates the potential of fluorescence imaging in conjunction with an original, fused segmentation framework for enhanced detection and delineation of brain tumor margins. By means of a test bed optical microscopy system, autofluorescence is utilized to capture gray level images of brain tumor specimens through slices, obtained at various depths from the surface, each of 10 µm thickness. The samples used in this study originate from tumor cell lines characterized as Gli36ϑEGRF cells expressing a green fluorescent protein. An innovative three-step biomedical image analysis framework is presented aimed at enhancing the contrast and dissimilarity between the malignant and the remaining tissue regions to allow for enhanced visualization and accurate extraction of tumor boundaries. The fluorescence image acquisition system implemented with an appropriate unsupervised pipeline of image processing and fusion algorithms indicates clear differentiation of tumor margins and increased image contrast. Establishing protocols for the safe administration of fluorescent protein molecules, these would be introduced into glioma tissues or cells either at a pre-surgery stage or applied to the malignant tissue intraoperatively; typical applications encompass areas of fluorescence-guided surgery (FGS) and confocal laser endomicroscopy (CLE). As a result, this image acquisition scheme could significantly improve decision-making during brain tumor resection procedures and significantly facilitate brain surgery neuropathology during operation.


2011 ◽  
Vol 68 (suppl_2) ◽  
pp. ons282-ons290 ◽  
Author(s):  
Nader Sanai ◽  
Jennifer Eschbacher ◽  
Guido Hattendorf ◽  
Stephen W. Coons ◽  
Mark C. Preul ◽  
...  

Abstract Background: The ability to diagnose brain tumors intraoperatively and identify tumor margins during resection could maximize resection and minimize morbidity. Advances in optical imaging enabled production of a handheld intraoperative confocal microscope. Objective: To present a feasibility analysis of the intraoperative confocal microscope for brain tumor resection. Methods: Thirty-three patients with brain tumor treated at Barrow Neurological Institute were examined. All patients received an intravenous bolus of sodium fluorescein before confocal imaging with the Optiscan FIVE 1 system probe. Optical biopsies were obtained within each tumor and along the tumor-brain interfaces. Corresponding pathologic specimens were then excised and processed. These data was compared by a neuropathologist to identify the concordance for tumor histology, grade, and margins. Results: Thirty-one of 33 lesions were tumors (93.9%) and 2 cases were identified as radiation necrosis (6.1%). Of the former, 25 (80.6%) were intra-axial and 6 (19.4%) were extra-axial. Intra-axial tumors were most commonly gliomas and metastases, while all extra-axial tumors were meningiomas. Among high-grade gliomas, vascular neo-proliferation, as well as tumor margins, were identifiable using confocal imaging. Meningothelial and fibrous meningiomas were distinct on confocal microcopy—the latter featured spindle-shaped cells distinguishable from adjacent parenchyma. Other tumor histologies correlated well with standard neuropathology tissue preparations. Conclusion: Intraoperative confocal microscopy is a practicable technology for the resection of human brain tumors. Preliminary analysis demonstrates reliability for a variety of lesions in identifying tumor cells and the tumor-brain interface. Further refinement of this technology depends upon the approval of tumor-specific fluorescent contrast agents for human use.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2320
Author(s):  
Paolo Ferroli ◽  
Ignazio Gaspare Vetrano ◽  
Silvia Schiavolin ◽  
Francesco Acerbi ◽  
Costanza Maria Zattra ◽  
...  

The decision of whether to operate on elderly patients with brain tumors is complex, and influenced by pathology-related and patient-specific factors. This retrospective cohort study, based on a prospectively collected surgical database, aims at identifying possible factors predicting clinical worsening after elective neuro-oncological surgery in elderly patients. Therefore, all patients ≥65 years old who underwent BT resection at a tertiary referral center between 01/2018 and 12/2019 were included. Age, smoking, previous radiotherapy, hypertension, preoperative functional status, complications occurrence, surgical complexity and the presence of comorbidities were prospectively collected and analyzed at discharge and the 3-month follow-up. The series included 143 patients (mean 71 years, range 65–86). Sixty-five patients (46%) had at least one neurosurgical complication, whereas 48/65 (74%) complications did not require invasive treatment. Forty-two patients (29.4%) worsened at discharge; these patients had a greater number of complications compared to patients with unchanged/improved performance status. A persistent worsening at three months of follow-up was noted in 20.3% of patients; again, this subgroup presented more complications than patients who remained equal or improved. Therefore, postoperative complications and surgical complexity seem to influence significantly the early outcome in elderly patients undergoing brain tumor surgery. In contrast, postoperative complications alone are the only factor with an impact on the 3-month follow-up.


2021 ◽  
Vol 163 (5) ◽  
pp. 1257-1267 ◽  
Author(s):  
Anne-Laure Lemaitre ◽  
Guillaume Herbet ◽  
Hugues Duffau ◽  
Gilles Lafargue

Author(s):  
Hamed Azarnoush ◽  
Gmaan Alzhrani ◽  
Alexander Winkler-Schwartz ◽  
Fahad Alotaibi ◽  
Nicholas Gelinas-Phaneuf ◽  
...  

Author(s):  
Shaun E. Gruenbaum ◽  
Christian S. Guay ◽  
Benjamin F. Gruenbaum ◽  
Aidos Konkayev ◽  
Andrea Falegnami ◽  
...  

2021 ◽  
Author(s):  
Xiu-Heng Zhang ◽  
Heng Zhang ◽  
Zhen Li ◽  
Gui-Bin Bian

Abstract Three-dimensional force perception is critically important in the enhancement of human force perception to minimize brain injuries resulting from excessive forces applied by surgical instruments in robot-assisted brain tumor resection. And surgeons are not responsive enough to interpret tool-tissue interaction forces. In previous studies, various force measurement techniques have been published. In neurosurgical scenarios, there are still some drawbacks to these presented approaches to forces perception. Because of the narrow, and slim configuration of bipolar forceps, three-dimensional contact forces on forceps tips is not easy to be traced in real-time. Five fundamental acts of handling bipolar forceps are poking, opposing, pressing, opening, and closing. The first three acts independently correspond to the axial force of z, x, y. So, in this paper, typical interactions between bipolar forceps and brain tissues have been analyzed. A three-dimensional force perception technique to collect force data on bipolar forceps tips by installing three Fiber Bragg Grating Sensors (FBGs) on each prong of bipolar forceps in real-time is proposed. Experiments using a tele-neurosurgical robot were performed on an in-vitro pig brain. In the experiments, three-dimensional forces were tracked in real-time. It is possible to experience forces at a minimum of 0.01 N. The three-dimensional force perception range is 0-4 N. The calibrating resolution on x, y, and z, is 0.01, 0.03, 0.1 N, separately. According to our observation, the measurement accuracy precision is over 95%.


Sign in / Sign up

Export Citation Format

Share Document