Authentication through gender classification from iris images using support vector machine

Author(s):  
Amjad Rehman Khan ◽  
Fatemeh Doosti ◽  
Mohsen Karimi ◽  
Majid Harouni ◽  
Usman Tariq ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ming Wu ◽  
Yubo Yuan

This paper presents a novel gender classification method based on geometry features of palm image which is simple, fast, and easy to handle. This gender classification method based on geometry features comprises two main attributes. The first one is feature extraction by image processing. The other one is classification system with polynomial smooth support vector machine (PSSVM). A total of 180 palm images were collected from 30 persons to verify the validity of the proposed gender classification approach and the results are satisfactory with classification rate over 85%. Experimental results demonstrate that our proposed approach is feasible and effective in gender recognition.


2019 ◽  
Vol 1 (1) ◽  
pp. 32-40
Author(s):  
Muhammad Noor Fatkhannudin ◽  
Adhi Prahara

Computer vision technology has been widely used in many applications and devices that involves biometric recognition. One of them is gender classification which has notable challenges when dealing with unique facial characteristics of human races. Not to mention the challenges from various poses of face and the lighting conditions. To perform gender classification, we resize and convert the face image into grayscale then extract its features using Fisherface. The features are reduced into 100 components using Principal Component Analysis (PCA) then classified into male and female category using linear Support Vector Machine (SVM). The test that conducted on 1014 face images from various human races resulted in 86% of accuracy using standard k-NN classifier while our proposed method shows better result with 88% of accuracy.


2020 ◽  
Author(s):  
Damodara Krishna Kishore Galla ◽  
BabuReddy Mukamalla ◽  
Rama Prakasha Reddy Chegireddy

Abstract The blind people has their difficulty to identify the object moving around them, therefore with a high accuracy score object detection and human face recognition system will helps them in identifying the things around them with ease. Facial record images are immobile an difficult assignment for biometric authentication systems due to various types of characteristics are dimensions, pose, expressions, illustrations and age etc. In facial and other united images includes different objects classifications. In this research article, a minimum distance trainer for feature selection by accessing SVM feature optimization process. For feature selection process SVM (support vector machine) was considered for improving its feature interpretability and computational efficiency., then LASSO classifier applied to perform object recognition and gender classification. Original face image database used for the gender classification. This approach was implemented with dual classification model (1) Recognizing or classifying human faces from various objects and (2) Classifying gender through face recognition] is made possible with the help of combining modified SIFT feature in combination with ridge regression (RR), elastic net (EN), lasso regression(LR) and lasso regression with Gaussian Support Vector Machines (LRGS) based classification.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2656 ◽  
Author(s):  
Alex Noel Joseph Raj ◽  
Rahul Sundaram ◽  
Vijayalakshmi G.V. Mahesh ◽  
Zhemin Zhuang ◽  
Alessandro Simeone

Sericulture is traditionally a labor-intensive rural-based industry. In modern contexts, the development of process automation faces new challenges related to quality and efficiency. During the silkworm farming life cycle, a common issue is represented by the gender classification of the cocoons. Improper cocoon separation negatively affects quantity and quality of the yield resulting in disruptive bottlenecks for the productivity. To tackle this issue, this paper proposes a multi sensor system for silkworm cocoons gender classification and separation. Utilizing a load sensor and a digital camera, the system acquires weight and digital images from individual silkworm cocoons. An image processing procedure is then applied to extract significant shape-related features from each image instance, which, combined with the weight data, are provided as inputs to train a Support Vector Machine-based pattern classifier for gender classification. Subsequently, an air blower mechanism and a conveyor system sort the cocoons into their respective bins. The developed system was trained and tested on two different types of silkworm cocoons breeds, respectively CSR2 and Pure Mysore. The system performances are finally discussed in terms of accuracy, robustness and computation time.


Sign in / Sign up

Export Citation Format

Share Document