scholarly journals Nitric oxide synthase (NOS) inhibitor L‐NAME activates inducible NOS/NO system and drives multidimensional regulation of Na + /K + ‐ATPase in ionocyte epithelia of immersion‐stressed air‐breathing fish ( Anabas testudineus Bloch)

Author(s):  
M. C. Subhash Peter ◽  
R. Gayathry
2005 ◽  
Vol 103 (1) ◽  
pp. 74-83 ◽  
Author(s):  
Pascal C. Chiari ◽  
Martin W. Bienengraeber ◽  
Dorothee Weihrauch ◽  
John G. Krolikowski ◽  
Judy R. Kersten ◽  
...  

Background Isoflurane produces delayed preconditioning in vivo. The authors tested the hypothesis that endothelial, inducible, or neuronal nitric oxide synthase (NOS) is a trigger or mediator of this protective effect. Methods In the absence or presence of exposure to isoflurane (1.0 minimum alveolar concentration) 24 h before experimentation, pentobarbital-anesthetized rabbits (n = 128) instrumented for hemodynamic measurement received 0.9% saline (control), the nonselective NOS inhibitor N-nitro-l-arginine methyl ester (10 mg/kg), one of two of the selective inducible NOS antagonists aminoguanidine (300 mg/kg) or 1400W (0.5 mg/kg), or the selective neuronal NOS inhibitor 7-nitroindazole (50 mg/kg) administered before exposure to isoflurane (trigger; day 1) or left anterior descending coronary artery occlusion (mediator; day 2). All rabbits underwent 30 min of coronary occlusion followed by 3 h of reperfusion. Tissue samples for reverse-transcription polymerase chain reaction and immunohistochemistry were also obtained in the presence or absence of N-nitro-l-arginine methyl ester with or without isoflurane pretreatment. Results Isoflurane significantly (P < 0.05) reduced infarct size (23 +/- 5% [mean +/- SD] of the left ventricular area at risk; triphenyltetrazolium chloride staining) as compared with control (42 +/- 7%). N-nitro-l-arginine methyl ester administered before isoflurane or coronary occlusion abolished protection (49 +/- 7 and 43 +/- 10%, respectively). Aminoguanidine, 1400W, and 7-nitroindazole did not alter infarct size or affect isoflurane-induced delayed preconditioning. Isoflurane increased endothelial but not inducible NOS messenger RNA transcription and protein translation immediately and 24 h after administration of the volatile agent. Pretreatment with N-nitro-l-arginine methyl ester attenuated isoflurane-induced increases in endothelial NOS expression. Conclusions The results suggest that endothelial NOS but not inducible or neuronal NOS is a trigger and mediator of delayed preconditioning by isoflurane in vivo.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5044-5044
Author(s):  
Marc C. Levesque ◽  
Dipak K. Ghosh ◽  
Bethany E. Beasley ◽  
Youwei Chen ◽  
Alicia D. Volkheimer ◽  
...  

Abstract The viability of CLL cells may be dependent on the autocrine production of nitric oxide because nitric oxide synthase (NOS) inhibitors induce CLL cell apoptosis and CLL cells express inducible NOS (NOS2). Our previous study indicated that the non-specific NOS inhibitor NMMA induced CLL cell apoptosis but only at high concentrations (> 1 mM) (Levesque et al., Leukemia17:442, 2003). Therefore, we performed the current study to identify NOS inhibitors that induce CLL cell apoptosis at lower concentrations and to understand factors that promote NOS inhibitor-induced CLL cell toxicity. We isolated and enriched CLL cells from the blood of CLL patients and cultured the CLL cells in media containing various concentrations of 21 different NOS inhibitors. We determined CLL cell viability following culture with each NOS inhibitor. We found that NOS inhibitors with specificity for neuronal NOS (NOS1) induced CLL cell death at concentrations lower than non-specific NOS inhibitors and lower than inducible NOS (NOS2) specific inhibitors. There was a weak correlation (r2 = 0.29, p = 0.1608) of the NOS1 (but not NOS2) half-maximal inhibitory concentration (IC50) of each NOS inhibitor for purified recombinant NOS and its ability to induce CLL cell death. We confirmed the specificity of the NOS inhibitors by inhibition of purified recombinant NOS1 and NOS2 enzyme activity, and we confirmed that NOS1 specific inhibitors induced CLL cell death by apoptosis. Because there was only a weak correlation of the NOS1 IC50 with NOS inhibitor induced CLL cell death, we considered whether other factors such as the Kd and hydrophobicity of each compound correlated with CLL cell death. We found that there was a direct correlation between the NOS1 (but not NOS2) dissociation constant (Kd) of NOS inhibitors and CLL cell death (r2 = 0.77, p = 0.0041) and a direct correlation of the partitioning coefficient (a measure of hydrophobicity) of each NOS inhibitor and its ability to induce CLL cell death (r2 = 0.68, p < 0.0001). Therefore, NOS inhibitors that bound tightly to NOS1 and were hydrophobic induced CLL cell death at lower concentrations. There was variable expression of CLL cell NOS1 mRNA (6 of 28 samples positive) and we were unable to demonstrate CLL cell expression of NOS1 protein by immunoblotting. This suggests that if NOS1 is present in CLL cells, it exists at very low levels. Taken together, we believe that low level NO production promotes CLL cell viability and that inhibition of CLL NOS induces CLL cell apoptosis. Importantly, our studies provide direction for the rational design and selection of NOS inhibitors that may be useful as CLL therapeutics.


2011 ◽  
Vol 301 (3) ◽  
pp. H721-H729 ◽  
Author(s):  
Katsuhiko Noguchi ◽  
Naobumi Hamadate ◽  
Toshihiro Matsuzaki ◽  
Mayuko Sakanashi ◽  
Junko Nakasone ◽  
...  

An elevation of oxidized forms of tetrahydrobiopterin (BH4), especially dihydrobiopterin (BH2), has been reported in the setting of oxidative stress, such as arteriosclerotic/atherosclerotic disorders, where endothelial nitric oxide synthase (eNOS) is dysfunctional, but the role of BH2 in the regulation of eNOS activity in vivo remains to be evaluated. This study was designed to clarify whether increasing BH2 concentration causes endothelial dysfunction in rats. To increase vascular BH2 levels, the BH2 precursor sepiapterin (SEP) was intravenously given after the administration of the specific dihydrofolate reductase inhibitor methotrexate (MTX) to block intracellular conversion of BH2 to BH4. MTX/SEP treatment did not significantly affect aortic BH4 levels compared with control treatment. However, MTX/SEP treatment markedly augmented aortic BH2 levels (291.1 ± 29.2 vs. 33.4 ± 6.4 pmol/g, P < 0.01) in association with moderate hypertension. Treatment with MTX alone did not significantly alter blood pressure or BH4 levels but decreased the BH4-to-BH2 ratio. Treatment with MTX/SEP, but not with MTX alone, impaired ACh-induced vasodilator and depressor responses compared with the control treatment (both P < 0.05) and also aggravated ACh-induced endothelium-dependent relaxations ( P < 0.05) of isolated aortas without affecting sodium nitroprusside-induced endothelium-independent relaxations. Importantly, MTX/SEP treatment significantly enhanced aortic superoxide production, which was diminished by NOS inhibitor treatment, and the impaired ACh-induced relaxations were reversed with SOD ( P < 0.05), suggesting the involvement of eNOS uncoupling. These results indicate, for the first time, that increasing BH2 causes eNOS dysfunction in vivo even in the absence of BH4 deficiency, demonstrating a novel insight into the regulation of endothelial function.


2015 ◽  
Vol 118 (9) ◽  
pp. 1113-1121 ◽  
Author(s):  
Yet Hoi Hong ◽  
Tony Frugier ◽  
Xinmei Zhang ◽  
Robyn M. Murphy ◽  
Gordon S. Lynch ◽  
...  

Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ−/−and nNOSμ+/+mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor NG-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ−/−and nNOSμ+/+mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (∼4%) were detected in muscles from nNOSμ−/−mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ.


1995 ◽  
Vol 7 (6) ◽  
pp. 1505 ◽  
Author(s):  
Iulio JL Di ◽  
NM Gude ◽  
RG King ◽  
SP Brennecke

The aim of this study was to determine whether any labour-associated changes in nitric oxide synthase (NOS) activity occur in human placenta and fetal membranes. NOS activity in amnion, choriodecidua, and placenta obtained from women before (at Caesarean section, not in labour), during (at Caesarean section, in labour) and after (spontaneous onset labour, normal vaginal delivery) labour was assessed by measuring conversion of radio-labelled L-arginine to L-citrulline. NOS activity, as judged by its inhibition by the specific NOS inhibitor N omega-nitro-L-arginine, was present in placental and amnionic tissues, but not in choriodecidual tissue specimens. Activity detected in choriodecidua was significantly blocked during incubation with a high concentration of valine, suggesting that L-arginine was being consumed by reactions other than NOS under the experimental conditions in that tissue. There were no significant differences among the labour groups in either amnion or placental NOS activities measured in the presence of 1 microM L-arginine. Amnion NOS activity was significantly less than that in placenta. Placental V(max) and Km values (determined after removal of endogenous L-arginine) did not differ significantly among the different labour groups.


2007 ◽  
Vol 35 (5) ◽  
pp. 1133-1137 ◽  
Author(s):  
S. Murphy ◽  
C.L. Gibson

Cerebral ischaemia results in the activation of three isoforms of NOS (nitric oxide synthase) that contribute to the development of and recovery from stroke pathology. This review discusses, in particular, the role of the transcriptionally activated NOS-2 (inducible NOS) isoform and summarizes the outcomes of experimental stroke studies with regard to the therapeutic utility of nitric oxide donors and NOS inhibitors.


1997 ◽  
Vol 93 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Baimeng Zhang ◽  
Kenneth R. Knight ◽  
Bruce Dowsing ◽  
Elizabeth Guida ◽  
Long H. Phan ◽  
...  

1. The effects of the nitric oxide synthase (NOS) inhibitors, NG-nitro-l-arginine-methyl ester (l-NAME), nitroiminoethyl-l-ornithine and S-methylisothiourea on skeletal muscle survival following 2 h of tourniquet ischaemia and 24 h of reperfusion were compared with those of the antiinflammatory steroid, dexamethasone. 2. Administration of each of the NOS inhibitors or dexamethasone 30 min before reperfusion reduced the degree of skeletal muscle necrosis 24 h after reperfusion. 3. The influence of timing of drug administration was investigated. l-NAME administered 30 min before reperfusion, at 3 h after reperfusion, but not thereafter, significantly improved muscle survival compared with saline-treated controls. Dexamethasone administered 30 min before, or at 3 or 8 h after reperfusion, but not at 16 h, significantly improved muscle survival, but neither agent had protective effects when administered before ischaemia. 4. After 8 h of reperfusion of ischaemic skeletal muscle, cell-free homogenates contained Ca2+-independent (inducible) NOS activity which was reduced in dexamethasone-treated (2.5 mg/kg) rats. Furthermore, inducible NOS mRNA levels, as detected by reverse transcriptase-PCR, were increased after 8 h of reperfusion in saline, but not in dexamethasone-treated rats. 5. These data suggest a significant deleterious effect of endogenous NO which may be restricted to the first 3 h of the reperfusion phase of ischaemia-reperfusion injury, and raise the possibility of effective treatment of incipient reperfusion injury, even after several hours of reperfusion.


1997 ◽  
Vol 9 (8) ◽  
pp. 789 ◽  
Author(s):  
Barbara Wiszniewska ◽  
Rafal Kurzawa ◽  
Andrzej Ciechanowicz ◽  
Boguslaw Machalinski

The expression of mRNA for inducible nitric oxide synthase (iNOS) in rat epithelial cells of epididymis was investigated with reverse transcription followed by polymerase chain reaction. Immunocytochemical reaction for iNOS was performed to confirm the enzyme’ s localization in the epididymal epithelium. Additionally, an indirect spectrophotometric method for nitric oxide (NO) determination was applied for measurement of nitrite production by cultured epididymal epithelial cells. Inducible NOS mRNA was detected in freshly isolated epithelial cells, in cultured cells without stimulation as well as in cultured cells after stimulation by lipopolysaccharide and interferon-gamma. Inducible NOS immunoreactivity was observed in the apical part of epithelial cells of epididymal sections and in the cytoplasm of cells in culture. Release of nitrite was observedin vitro in both the unstimulated and stimulated cells of caput (1·44 ± 0·94 v. 4·37 ± 2·42 µM) and cauda (0·69 ± 1·21 v. 5·21 ± 2·76 µM) epididymis (P < 0·001). To the best of our knowledge, this is the first study to demonstrate iNOS in the epididymal epithelial cells of the rat. Nitric oxide released by epididymal epithelial cells may act on cells and tissues located nearby. The results may help explain epididymal function: sperm storage, passage and maturation. Excessive epididymal NO production may also play a role in the inflammatory infertility of the male. Extra keyword: iNOS


1995 ◽  
Vol 269 (6) ◽  
pp. H1891-H1898 ◽  
Author(s):  
T. M. McKenna ◽  
S. Li ◽  
S. Tao

Lipopolysaccharide (LPS) treatment impairs cardiac myocyte contractility in a nitric oxide synthase (NOS)-dependent manner. The objective of this study was to assess whether protein kinase C (PKC) transduces the LPS signal into an enhanced NOS activity in rat cardiac myocytes. LPS (100 ng/ml) stimulated myocyte PKC activity, inducible NOS (iNOS) expression, and NOS activity in a time- and protein synthesis-dependent fashion. Directly activating PKC with beta-phorbol 12,13-dibutyrate (beta-PDB) also induced myocyte iNOS synthesis and NOS activity and reduced electrically stimulated contractility, while the inactive alpha-PDB was ineffectual. Contractility could be restored to beta-PDB-incubated cells by superfusion with the NOS inhibitor N omega-nitro-L-arginine methyl ester. PKC blockade with sphingosine, chelerythrine, or calphostin-C precluded LPS- and beta-PDB-induced increases in NOS activity and protected contractility. Depletion of PKC by 18 h of incubation with beta-PDB in the presence of chelerythrine also blocked acquisition of enhanced NOS activity and contractile dysfunction when the myocytes were subsequently exposed to LPS. These findings suggest that PKC is a significant intracellular mediator for the effects of LPS on cardiac cell NOS activity and contractile function.


Sign in / Sign up

Export Citation Format

Share Document