Xerl is a secreted protein required for establishing the neural plate/neural crest boundary inXenopus embryo

2003 ◽  
Vol 296A (2) ◽  
pp. 108-116 ◽  
Author(s):  
Sei Kuriyama ◽  
Akihiro Ueda ◽  
Tsutomu Kinoshita
Development ◽  
1980 ◽  
Vol 57 (1) ◽  
pp. 71-78
Author(s):  
N. B. Levy ◽  
Ann Andrew ◽  
B. B. Rawdon ◽  
Beverley Kramer

Two- to ten-somite chick embryos were studied in order to ascertain whether, as has been proposed, there exists a ‘ventral neural ridge’ which gives rise to the hypophyseal (Rathke's) pouch. Serial sections and stereo-microscopy were used. The neural ridges arch around the rostral end of the embryo onto the ventral surface of the head, but no evidence was found for their extension to form a ‘ventral neural ridge’ reaching the stomodaeum: in fact a considerable expanse of non-thickened surface ectoderm was seen to separate the ventral portions of the neural ridges from the stomodaeum. The thickening of neural ectoderm which does appear on the ventral surface of the head results from apposition and fusion of the opposite neural ridges flanking the neural plate and thus the tip of the anterior neuropore - the classically accepted mode of closure of the neuropore. These findings are in accord with the generally accepted concept of the origin of thehypophyseal pouch rather than with its derivation from a ‘ventral neural ridge’. No sign of neural crest formation was encountered ventrally; this observation excludes the possibility that endocrine cells of the APUD series could originate from neural crest in this region.


PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e115165 ◽  
Author(s):  
Zuming Zhang ◽  
Yu Shi ◽  
Shuhua Zhao ◽  
Jiejing Li ◽  
Chaocui Li ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Shashank Gandhi ◽  
Erica J Hutchins ◽  
Krystyna Maruszko ◽  
Jong H Park ◽  
Matthew Thomson ◽  
...  

During gastrulation, neural crest cells are specified at the neural plate border, as characterized by Pax7 expression. Using single-cell RNA sequencing coupled with high-resolution in situ hybridization to identify novel transcriptional regulators, we show that chromatin remodeler Hmga1 is highly expressed prior to specification and maintained in migrating chick neural crest cells. Temporally controlled CRISPR-Cas9-mediated knockouts uncovered two distinct functions of Hmga1 in neural crest development. At the neural plate border, Hmga1 regulates Pax7-dependent neural crest lineage specification. At premigratory stages, a second role manifests where Hmga1 loss reduces cranial crest emigration from the dorsal neural tube independent of Pax7. Interestingly, this is rescued by stabilized ß-catenin, thus implicating Hmga1 as a canonical Wnt activator. Together, our results show that Hmga1 functions in a bimodal manner during neural crest development to regulate specification at the neural plate border, and subsequent emigration from the neural tube via canonical Wnt signaling.


Development ◽  
1995 ◽  
Vol 121 (2) ◽  
pp. 525-538 ◽  
Author(s):  
M.A. Selleck ◽  
M. Bronner-Fraser

We have investigated the lineage and tissue interactions that result in avian neural crest cell formation from the ectoderm. Presumptive neural plate was grafted adjacent to non-neural ectoderm in whole embryo culture to examine the role of tissue interactions in ontogeny of the neural crest. Our results show that juxtaposition of non-neural ectoderm and presumptive neural plate induces the formation of neural crest cells. Quail/chick recombinations demonstrate that both the prospective neural plate and the prospective epidermis can contribute to the neural crest. When similar neural plate/epidermal confrontations are performed in tissue culture to look at the formation of neural crest derivatives, juxtaposition of epidermis with either early (stages 4–5) or later (stages 6–10) neural plate results in the generation of both melanocytes and sympathoadrenal cells. Interestingly, neural plates isolated from early stages form no neural crest cells, whereas those isolated later give rise to melanocytes but not crest-derived sympathoadrenal cells. Single cell lineage analysis was performed to determine the time at which the neural crest lineage diverges from the epidermal lineage and to elucidate the timing of neural plate/epidermis interactions during normal development. Our results from stage 8 to 10+ embryos show that the neural plate/neural crest lineage segregates from the epidermis around the time of neural tube closure, suggesting that neural induction is still underway at open neural plate stages.


Author(s):  
Gemma Sutton ◽  
Robert N. Kelsh ◽  
Steffen Scholpp

The neural crest (NC) is a multipotent cell population in vertebrate embryos with extraordinary migratory capacity. The NC is crucial for vertebrate development and forms a myriad of cell derivatives throughout the body, including pigment cells, neuronal cells of the peripheral nervous system, cardiomyocytes and skeletogenic cells in craniofacial tissue. NC induction occurs at the end of gastrulation when the multipotent population of NC progenitors emerges in the ectodermal germ layer in the neural plate border region. In the process of NC fate specification, fate-specific markers are expressed in multipotent progenitors, which subsequently adopt a specific fate. Thus, NC cells delaminate from the neural plate border and migrate extensively throughout the embryo until they differentiate into various cell derivatives. Multiple signalling pathways regulate the processes of NC induction and specification. This review explores the ongoing role of the Wnt/β-catenin signalling pathway during NC development, focusing on research undertaken in the Teleost model organism, zebrafish (Danio rerio). We discuss the function of the Wnt/β-catenin signalling pathway in inducing the NC within the neural plate border and the specification of melanocytes from the NC. The current understanding of NC development suggests a continual role of Wnt/β-catenin signalling in activating and maintaining the gene regulatory network during NC induction and pigment cell specification. We relate this to emerging models and hypotheses on NC fate restriction. Finally, we highlight the ongoing challenges facing NC research, current gaps in knowledge, and this field’s potential future directions.


Development ◽  
1999 ◽  
Vol 126 (1) ◽  
pp. 63-73 ◽  
Author(s):  
E. Pera ◽  
S. Stein ◽  
M. Kessel

Ectodermal patterning of the chick embryo begins in the uterus and continues during gastrulation, when cells with a neural fate become restricted to the neural plate around the primitive streak, and cells fated to become the epidermis to the periphery. The prospective epidermis at early stages is characterized by the expression of the homeobox gene DLX5, which remains an epidermal marker during gastrulation and neurulation. Later, some DLX5-expressing cells become internalized into the ventral forebrain and the neural crest at the hindbrain level. We studied the mechanism of ectodermal patterning by transplantation of Hensen's nodes and prechordal plates. The DLX5 marker indicates that not only a neural plate, but also a surrounding epidermis is induced in such operations. Similar effects can be obtained with neural plate grafts. These experiments demonstrate that the induction of a DLX5-positive epidermis is triggered by the midline, and the effect is transferred via the neural plate to the periphery. By repeated extirpations of the endoderm we suppressed the formation of an endoderm/mesoderm layer under the epiblast. This led to the generation of epidermis, and to the inhibition of neuroepithelium in the naked ectoderm. This suggests a signal necessary for neural, but inhibitory for epidermal development, normally coming from the lower layers. Finally, we demonstrate that BMP4, as well as BMP2, is capable of inducing epidermal fate by distorting the epidermis-neural plate boundary. This, however, does not happen independently within the neural plate or outside the normal DLX5 domain. In the area opaca, the co-transplantation of a BMP4 bead with a node graft leads to the induction of DLX5, thus indicating the cooperation of two factors. We conclude that ectodermal patterning is achieved by signalling both from the midline and from the periphery, within the upper but also from the lower layers.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1209-1209
Author(s):  
Brian Head ◽  
Jane La Du ◽  
Robyn Tanguay ◽  
Chrissa Kioussi ◽  
Maret Traber

Abstract Objectives Vitamin E (VitE) deficiency causes vertebrate embryonic lethality. The alpha-tocopherol transfer protein (Ttpa) likely regulates VitE distribution in the early zebrafish embryo because Ttpa knockdown causes impaired nervous system development and embryonic death by 15–18 hours post-fertilization (hpf). We propose that VitE is necessary for normal brain and peripheral nervous system development. Methods Zebrafish embryos are obtained from adults fed either VitE sufficient (E+) or deficient (E–) diets for at least 80 days. Embryos at 12 and 24 hpf are subjected to RNA whole mount in situ hybridization (WISH). RNA is also collected from embryos at 12, 18 and 24 hpf for RT-qPCR of specific targets. Results At 12 hpf, the midbrain-hindbrain boundary and otic placodes are malformed in E– embryos, as shown by Pax2a expression. Similarly, Sox10 expression shows that E– embryos lack clear neural plate borders. Nonetheless, in 12 hpf E + and E− embryos Ttpa is localized similarly throughout the nervous system. Pax2a expression initiates collagen formation in the developing notochord. Collagen genes, col2a1a and col9a2, expression patterns showed abnormal notochord structures in 24 hpf E– embryos. At 24 hpf in E + embryos, Sox10 expressing-neural crest cells are localized both in the central nervous system and dorsal root ganglia (DRG), while the Sox10 signal is diminished in E– embryos in both the DRG and early enteric nervous system. At 24 hpf, Ttpa expression outlines the brain ventricle borders; critically E– embryos show reduced Ttpa signal and impaired ventricle closing. Gene expression by qPCR will be used to confirm these results. Conclusions This VitE deficient embryo model suggests that the carefully programmed development of the nervous system is distorted due to lack of adequate VitE. Thus, Ttpa and VitE are critical molecules for neural plate and neural tube formation, and neural crest cell migration. Funding Sources The authors received no specific funding for this work.


Development ◽  
1998 ◽  
Vol 125 (24) ◽  
pp. 4919-4930 ◽  
Author(s):  
M.A. Selleck ◽  
M.I. Garcia-Castro ◽  
K.B. Artinger ◽  
M. Bronner-Fraser

To define the timing of neural crest formation, we challenged the fate of presumptive neural crest cells by grafting notochords, Sonic Hedgehog- (Shh) or Noggin-secreting cells at different stages of neurulation in chick embryos. Notochords or Shh-secreting cells are able to prevent neural crest formation at open neural plate levels, as assayed by DiI-labeling and expression of the transcription factor, Slug, suggesting that neural crest cells are not committed to their fate at this time. In contrast, the BMP signaling antagonist, Noggin, does not repress neural crest formation at the open neural plate stage, but does so if injected into the lumen of the closing neural tube. The period of Noggin sensitivity corresponds to the time when BMPs are expressed in the dorsal neural tube but are down-regulated in the non-neural ectoderm. To confirm the timing of neural crest formation, Shh or Noggin were added to neural folds at defined times in culture. Shh inhibits neural crest production at early stages (0-5 hours in culture), whereas Noggin exerts an effect on neural crest production only later (5-10 hours in culture). Our results suggest three phases of neurulation that relate to neural crest formation: (1) an initial BMP-independent phase that can be prevented by Shh-mediated signals from the notochord; (2) an intermediate BMP-dependent phase around the time of neural tube closure, when BMP-4 is expressed in the dorsal neural tube; and (3) a later pre-migratory phase which is refractory to exogenous Shh and Noggin.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ankita Thawani ◽  
Andrew K. Groves

The paired cranial sensory organs and peripheral nervous system of vertebrates arise from a thin strip of cells immediately adjacent to the developing neural plate. The neural plate border region comprises progenitors for four key populations of cells: neural plate cells, neural crest cells, the cranial placodes, and epidermis. Putative homologues of these neural plate border derivatives can be found in protochordates such as amphioxus and tunicates. In this review, we summarize key signaling pathways and transcription factors that regulate the inductive and patterning events at the neural plate border region that give rise to the neural crest and placodal lineages. Gene regulatory networks driven by signals from WNT, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling primarily dictate the formation of the crest and placodal lineages. We review these studies and discuss the potential of recent advances in spatio-temporal transcriptomic and epigenomic analyses that would allow a mechanistic understanding of how these signaling pathways and their downstream transcriptional cascades regulate the formation of the neural plate border region.


Development ◽  
1996 ◽  
Vol 122 (9) ◽  
pp. 2911-2920 ◽  
Author(s):  
N.D. Holland ◽  
G. Panganiban ◽  
E.L. Henyey ◽  
L.Z. Holland

The dynamic expression patterns of the single amphioxus Distal-less homolog (AmphiDll) during development are consistent with successive roles of this gene in global regionalization of the ectoderm, establishment of the dorsoventral axis, specification of migratory epidermal cells early in neurulation and the specification of forebrain. Such a multiplicity of Distal-less functions probably represents an ancestral chordate condition and, during craniate evolution, when this gene diversified into a family of six or so members, the original functions evidently tended to be parcelled out among the descendant genes. In the amphioxus gastrula, AmphiDll is expressed throughout the animal hemisphere (presumptive ectoderm), but is soon downregulated dorsally (in the presumptive neural plate). During early neurulation, AmphiDll-expressing epidermal cells flanking the neural plate extend lamellipodia, appear to migrate over it and meet mid-dorsally. Midway in neurulation, cells near the anterior end of the neural plate begin expressing AmphiDll and, as neurulation terminates, these cells are incorporated into the dorsal part of the neural tube, which forms by a curling of the neural plate. This group of AmphiDll-expressing neural cells and a second group expressing the gene a little later and even more anteriorly in the neural tube demarcate a region that comprises the anterior three/fourths of the cerebral vesicle; this region of the amphioxus neural tube, as judged by neural expression domains of craniate Distal-less-related genes, is evidently homologous to the craniate forebrain. Our results suggest that craniates evolved from an amphioxus-like creature that had the beginnings of a forebrain and possibly a precursor of neural crest - namely, the cell population leading the epidermal overgrowth of the neural plate during early neurulation.


Sign in / Sign up

Export Citation Format

Share Document