Phosphonic and Phosphinic Acid Analogs of Penicillamine

1985 ◽  
Vol 1985 (3) ◽  
pp. 448-452 ◽  
Author(s):  
Karlheinz Drauz ◽  
Hans Günter Koban ◽  
Jürgen Martens ◽  
Wolfgang Schwarze
Keyword(s):  
2020 ◽  
Vol 10 (1) ◽  
pp. 001-010 ◽  
Author(s):  
Nikoletta Harsági ◽  
Betti Szőllősi ◽  
Nóra Zsuzsa Kiss ◽  
György Keglevich

Abstract The optimized HCl-catalyzed hydrolysis of alkyl diphenylphosphinates is described. The reaction times and pseudo-first-order rate constants suggested the iPr > Me > Et ∼ Pr ∼ Bu order of reactivity in respect of the alkyl group of the phosphinates. The MW-assisted p-toluenesulfonic acid (PTSA)-catalyzed variation means a better alternative possibility due to the shorter reaction times, and the alkaline hydrolysis is another option. The transesterification of alkyl diphenylphosphinates took place only in the presence of suitable ionic liquids, such as butyl-methylimidazolium hexafluorophosphorate ([bmim][PF6]) and butyl-methylimidazolium tetrafluoroborate ([bmim][BF4]). The application of ethyl-methylimidazolium hydrosulfate ([emim][HSO4]) and butyl-methylimidazolium chloride ([bmim][Cl]) was not too efficient, as the formation of the ester was accompanied by the fission of the O–C bond resulting in the formation of Ph2P(O)OH. This surprising transformation may be utilized in the phosphinate → phosphinic acid conversion.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sara Bitam ◽  
Ahmad Elbahnsi ◽  
Geordie Creste ◽  
Iwona Pranke ◽  
Benoit Chevalier ◽  
...  

AbstractC407 is a compound that corrects the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein carrying the p.Phe508del (F508del) mutation. We investigated the corrector effect of c407 and its derivatives on F508del-CFTR protein. Molecular docking and dynamics simulations combined with site-directed mutagenesis suggested that c407 stabilizes the F508del-Nucleotide Binding Domain 1 (NBD1) during the co-translational folding process by occupying the position of the p.Phe1068 side chain located at the fourth intracellular loop (ICL4). After CFTR domains assembly, c407 occupies the position of the missing p.Phe508 side chain. C407 alone or in combination with the F508del-CFTR corrector VX-809, increased CFTR activity in cell lines but not in primary respiratory cells carrying the F508del mutation. A structure-based approach resulted in the synthesis of an extended c407 analog G1, designed to improve the interaction with ICL4. G1 significantly increased CFTR activity and response to VX-809 in primary nasal cells of F508del homozygous patients. Our data demonstrate that in-silico optimized c407 derivative G1 acts by a mechanism different from the reference VX-809 corrector and provide insights into its possible molecular mode of action. These results pave the way for novel strategies aiming to optimize the flawed ICL4–NBD1 interface.


2011 ◽  
Vol 124 (8) ◽  
pp. 1931-1934 ◽  
Author(s):  
Ismael López-Duarte ◽  
Mingkui Wang ◽  
Robin Humphry-Baker ◽  
Mine Ince ◽  
M. Victoria Martínez-Díaz ◽  
...  

2000 ◽  
Vol 17 (2) ◽  
pp. 273-281 ◽  
Author(s):  
M. KANEDA ◽  
B. ANDRÁSFALVY ◽  
A. KANEKO

The localization of endogenous Zn2+ in the mouse retina was examined histochemically and the inhibitory action of Zn2+ on GABA-induced responses was studied in bipolar cells isolated from the mouse retina. Accumulation of endogenous Zn2+ was detected in photoreceptors, bipolar, and/or amacrine cells by either the bromopyridylazo-diethylaminophenol method or the dithizone method. Under whole-cell recording conditions, GABA induced a Cl− current in isolated bipolar cells. The current consisted of two components. The first component was inhibited completely by application of 100 μM bicuculline, suggesting that this is a GABAA-receptor mediated current. The second component was inhibited completely by 100 μM 3-aminopropyl-(methyl)-phosphinic acid, suggesting that this is a GABAC-receptor mediated current. GABAC receptors were present at a higher density on the axon terminal than on dendrites. Zn2+ inhibited both GABAA and GABAC receptors. GABAC receptors were more susceptible to Zn2+; the IC50 for the GABAA receptor was 67.4 μM and that for the GABAC receptor was 1.9 μM. These results suggest that Zn2+ modulates the inhibitory interaction between amacrine and bipolar cells, particularly that mediated by the GABAC receptor.


1992 ◽  
Vol 282 (3) ◽  
pp. 747-752 ◽  
Author(s):  
O A M al-Bar ◽  
C D O'Connor ◽  
I G Giles ◽  
M Akhtar

A 1.2 kb BamHI fragment from pDK30 [Robinson, Kenan, Sweeney & Donachie (1986) J. Bacteriol. 167, 809-817] was cloned in pDOC55 [O'Connor & Timmis (1987) J. Bacteriol. 169, 4457-4482] to give two constructs, pDOC89 and pDOC87, in which the Escherichia coli D-alanine:D-alanine ligase (EC 6.3.2.4) gene (ddl) was placed under the control of the lac and lambda PL promoters respectively. Both constructs, when used to transform E. coli M72, gave similar levels of expression of the ddl gene. The expressed enzyme was purified to homogeneity and the amino acid sequence of its N-terminal region was found to be consistent with that predicted from the gene sequence, except that the N-terminal methionine was not present in the mature protein. [1(S)-Aminoethyl][(2RS)2-carboxy-1-octyl]phosphinic acid (I), previously shown to bind tightly to Enterococcus faecalis and Salmonella typhimurium D-alanine:D-alanine ligases following phosphorylation Parsons, Patchett, Bull, Schoen, Taub, Davidson, Combs, Springer, Gadebusch, Weissberger, Valiant, Mellin & Busch (1988) J. Med. Chem. 31, 1772-1778; Duncan & Walsh (1988) Biochemistry 27, 3709-3714], was found to be a classical slow-binding inhibitor of the E. coli ligase.


2021 ◽  
Vol 23 (35) ◽  
pp. 19558-19570
Author(s):  
Robert C. Chapleski ◽  
Alexander S. Ivanov ◽  
Kirk A. Peterson ◽  
Vyacheslav S. Bryantsev

Density functionals with high exact exchange (EHFX ≥ 50%) show the best agreement with CCSD(T)-DKH2 Am(iii)/Eu(iii) selectivities and MP2-DKH2 distances.


Sign in / Sign up

Export Citation Format

Share Document