An ultrastructural study of differentiatation of pyriform cells and their contribution to oocyte growth in representative squamata

1992 ◽  
Vol 212 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Piero Andreuccetti
Development ◽  
1979 ◽  
Vol 54 (1) ◽  
pp. 5-15
Author(s):  
S. Filosa ◽  
C. Taddei ◽  
P. Andreuccetti

The follicular epithelium of the lizard oocytes undergoes structural and morphological modifications throughout oocyte growth. During this process the number of follicle cells increases and the epithelium acquires a multilayered and polymorphic organization which is characterized by the appearance of large follicle cells (intermediate and pyriform cells). The number of large cells also increases during oocyte growth and this increase parallels that of small cells. However, only the small cells become labelled one hour after [3H-]thymidine administration. Large cells have been found labelled after a longer period of time, i.e. 4–5 months after isotope injection. All these results together indicate that large follicle cells arise from the differentiation of small cells.


Author(s):  
Bruce Mackay

The broadest application of transmission electron microscopy (EM) in diagnostic medicine is the identification of tumors that cannot be classified by routine light microscopy. EM is useful in the evaluation of approximately 10% of human neoplasms, but the extent of its contribution varies considerably. It may provide a specific diagnosis that can not be reached by other means, but in contrast, the information obtained from ultrastructural study of some 10% of tumors does not significantly add to that available from light microscopy. Most cases fall somewhere between these two extremes: EM may correct a light microscopic diagnosis, or serve to narrow a differential diagnosis by excluding some of the possibilities considered by light microscopy. It is particularly important to correlate the EM findings with data from light microscopy, clinical examination, and other diagnostic procedures.


Author(s):  
W. G. Banfield ◽  
G. Kasnic ◽  
J. H. Blackwell

An ultrastructural study of the intestinal epithelium of mice infected with the agent of epizootic diarrhea of infant mice (EDIM virus) was first performed by Adams and Kraft. We have extended their observations and have found developmental forms of the virus and associated structures not reported by them.Three-day-old NLM strain mice were infected with EDIM virus and killed 48 to 168 hours later. Specimens of bowel were fixed in glutaraldehyde, post fixed in osmium tetroxide and embedded in epon. Sections were stained with uranyl magnesium acetate followed by lead citrate and examined in an updated RCA EMU-3F electron microscope.The cells containing virus particles (infected) are at the tips of the villi and occur throughout the intestine from duodenum through colon. All developmental forms of the virus are present from 48 to 168 hours after infection. Figure 1 is of cells without virus particles and figure 2 is of an infected cell. The nucleus and cytoplasm of the infected cells appear clearer than the cells without virus particles.


Author(s):  
Corazon D. Bucana

In the circulating blood of man and guinea pigs, glycogen occurs primarily in polymorphonuclear neutrophils and platelets. The amount of glycogen in neutrophils increases with time after the cells leave the bone marrow, and the distribution of glycogen in neutrophils changes from an apparently random distribution to large clumps when these cells move out of the circulation to the site of inflammation in the peritoneal cavity. The objective of this study was to further investigate changes in glycogen content and distribution in neutrophils. I chose an intradermal site because it allows study of neutrophils at various stages of extravasation.Initially, osmium ferrocyanide and osmium ferricyanide were used to fix glycogen in the neutrophils for ultrastructural studies. My findings confirmed previous reports that showed that glycogen is well preserved by both these fixatives and that osmium ferricyanide protects glycogen from solubilization by uranyl acetate.I found that osmium ferrocyanide similarly protected glycogen. My studies showed, however, that the electron density of mitochondria and other cytoplasmic organelles was lower in samples fixed with osmium ferrocyanide than in samples fixed with osmium ferricyanide.


Author(s):  
Randy Moore

Cell and tissue interactions are a basic aspect of eukaryotic growth and development. While cell-to-cell interactions involving recognition and incompatibility have been studied extensively in animals, there is no known antigen-antibody reaction in plants and the recognition mechanisms operating in plant grafts have been virtually neglected.An ultrastructural study of the Sedum telephoides/Solanum pennellii graft was undertaken to define possible mechanisms of plant graft incompatibility. Grafts were surgically dissected from greenhouse grown plants at various times over 1-4 weeks and prepared for EM employing variations in the standard fixation and embedding procedure. Stock and scion adhere within 6 days after grafting. Following progressive cell senescence in both Sedum and Solanum, the graft interface appears as a band of 8-11 crushed cells after 2 weeks (Fig. 1, I). Trapped between the buckled cell walls are densely staining cytoplasmic remnants and residual starch grains, an initial product of wound reactions in plants.


Author(s):  
S.R. Allegra

The respective roles of the ribo somes, endoplasmic reticulum, Golgi apparatus and perhaps nucleus in the synthesis and maturation of melanosomes is still the subject of some controversy. While the early melanosomes (premelanosomes) have been frequently demonstrated to originate as Golgi vesicles, it is undeniable that these structures can be formed in cells in which Golgi system is not found. This report was prompted by the findings in an essentially amelanotic human cellular blue nevus (melanocytoma) of two distinct lines of melanocytes one of which was devoid of any trace of Golgi apparatus while the other had normal complement of this organelle.


Author(s):  
Takanori Sohda ◽  
Hiroshi Saito ◽  
Goro Asano ◽  
Katsunari Fukushi ◽  
Katsuya Suzuki ◽  
...  

Recently, the functional aspect as well as morphological aspect of the reserve cells in the cervix uteri drew much attention in view of the carcinogenesis in squamocolumunar junction. In this communication, the authors elucidate the ultrastructural features of the reserve cells in patients of various age groups visiting our university hospital and affiliated hospital.From conventional light microscopic point of view, the reserve cells tend to be pronounced in various pathological conditions, such as the persisting inflammation, proliferative disorders and irritation of hormones. The morphological patterns of the reserve cells from various stage and degree of irritation were observed.


Author(s):  
T.W. Smith ◽  
J.A. Roberts ◽  
B.J. Martin

Chronic pyelonephritis is one of the most common diseases of the kidney and accounts for a sizeable number of cases of renal insufficiency in man, however its pathogenesis requires further elucidation. Transmission electron microscopy may serve as a uniquely effective means of observing details of the nature of this disease. The present paper describes preliminary results of an ultrastructural study of chronic pyelonephritis in Macaca arctoides (stumptail monkey).The infection was induced in these experiments in a retrograde fashion by means of a unilateral catheterization of the left ureter whereby an innoculum of 10 cc of broth containing approximately 2 billion E. coli per cc and radio-opaque dye were injected under pressure (mimicing vesico-ureteric reflux).


Author(s):  
Norberto Treviño ◽  
Alfredo Feria-Velasco ◽  
I. Ruiz de Chávez

Although erythrophagocytosis by various species of Entamoeba is a well known phenomenon this has not yet been studied in detail at the ultrastructural level. The present work deals with the description of the incorporation process of erythrocytes by trophozoites of E. histolytica. For this study, trophozoites of E. histolytica, HK-9:NIH strain cultured in axenic conditions and washed human erythrocytes were placed on a hot plate at 37°C in physiological saline solution. After 5 minutes, 2.5% glutarldehyde was added and the samples were processed according to conventional techniques for electron microscopy.Based upon light microscopy studies on living trophozoites in contact with erythrocytes, it seems that erythrophagocytosis only takes place in one pole of the parasite.


Sign in / Sign up

Export Citation Format

Share Document