Clinical perspectives of high-resolution mass spectrometry–based proteomics in neuroscience—Exemplified in amyotrophic lateral sclerosis biomarker discovery research

2008 ◽  
Vol 43 (5) ◽  
pp. 559-571 ◽  
Author(s):  
Titti Ekegren ◽  
Jörg Hanrieder ◽  
Jonas Bergquist
2005 ◽  
Vol 51 (10) ◽  
pp. 1946-1954 ◽  
Author(s):  
Mary F Lopez ◽  
Alvydas Mikulskis ◽  
Scott Kuzdzal ◽  
David A Bennett ◽  
Jeremiah Kelly ◽  
...  

Abstract Background: Researchers typically search for disease markers using a “targeted” approach in which a hypothesis about the disease mechanism is tested and experimental results either confirm or disprove the involvement of a particular gene or protein in the disease. Recently, there has been interest in developing disease diagnostics based on unbiased quantification of differences in global patterns of protein and peptide masses, typically in blood from individuals with and without disease. We combined a suite of methods and technologies, including novel sample preparation based on carrier-protein capture and biomarker enrichment, high-resolution mass spectrometry, a unique cohort of well-characterized persons with and without Alzheimer disease (AD), and powerful bioinformatic analysis, that add statistical and procedural robustness to biomarker discovery from blood. Methods: Carrier-protein–bound peptides were isolated from serum samples by affinity chromatography, and peptide mass spectra were acquired by a matrix-assisted laser desorption/ionization (MALDI) orthogonal time-of-flight (O-TOF) mass spectrometer capable of collecting data over a broad mass range (100 to >300 000 Da) in a single acquisition. Discriminatory analysis of mass spectra was used to process and analyze the raw mass spectral data. Results: Coupled with the biomarker enrichment protocol, the high-resolution MALDI O-TOF mass spectra provided informative, reproducible peptide signatures. The raw mass spectra were analyzed and used to build discriminant disease models that were challenged with blinded samples for classification. Conclusions: Carrier-protein enrichment of disease biomarkers coupled with high-resolution mass spectrometry and discriminant pattern analysis is a powerful technology for diagnostics and population screening. The mass fingerprint model successfully classified blinded AD patient and control samples with high sensitivity and specificity.


Author(s):  
Dezhen Wang ◽  
Peining Xu ◽  
Clementina Mesaros

Plasma and serum are the most widely used blood-derived biofluids for metabolomics and lipidomics assays, but the isolation of these products from blood may introduce additional bias as indicated by the fact that many analytes that are present at high concentrations in blood cells cannot be measured and evaluated in those samples. Of particular concern, variable hemolysis during the pre-processing of blood products could compromise accurate and reproducible quantification. Compared with plasma or serum, whole blood may be a better alternative due to simplicity of processing. In this study, we provide a comprehensive method for quantification of the whole blood sphingolipidome and the concentrations were compared with those from plasma. Combining a single-phase extraction method with liquid-chromatography high resolution mass spectrometry (R=120, 000), assisted by alkaline hydrolysis, we were able to identify and simultaneously quantify more than 150 sphingolipids. Furthermore, most of sphingolipids remained stable after a freeze/thaw cycle. Whole blood contained a higher concentration of most sphingolipids than corresponding plasma. Moreover, individual variations in the levels of sphingolipids were lower for whole blood than plasma. These findings demonstrate that whole blood could be a better alternative to plasma, and potentially guide the evaluation of sphinglipidome for biomarker discovery.


2020 ◽  
Author(s):  
Jie Cheng ◽  
Yuchen Tang ◽  
Baoquan Bao ◽  
Ping Zhang

<p><a></a><a></a><a></a><a><b>Objective</b></a>: To screen all compounds of Agsirga based on the HPLC-Q-Exactive high-resolution mass spectrometry and find potential inhibitors that can respond to 2019-nCoV from active compounds of Agsirga by molecular docking technology.</p> <p><b>Methods</b>: HPLC-Q-Exactive high-resolution mass spectrometry was adopted to identify the complex components of Mongolian medicine Agsirga, and separated by the high-resolution mass spectrometry Q-Exactive detector. Then the Orbitrap detector was used in tandem high-resolution mass spectrometry, and the related molecular and structural formula were found by using the chemsipider database and related literature, combined with precise molecular formulas (errors ≤ 5 × 10<sup>−6</sup>) , retention time, primary mass spectra, and secondary mass spectra information, The fragmentation regularities of mass spectra of these compounds were deduced. Taking ACE2 as the receptor and deduced compounds as the ligand, all of them were pretreated by discover studio, autodock and Chem3D. The molecular docking between the active ingredients and the target protein was studied by using AutoDock molecular docking software. The interaction between ligand and receptor is applied to provide a choice for screening anti-2019-nCoV drugs.</p> <p><b>Result</b>: Based on the fragmentation patterns of the reference compounds and consulting literature, a total of 96 major alkaloids and stilbenes were screened and identified in Agsirga by the HPLC-Q-Exactive-MS/MS method. Combining with molecular docking, a conclusion was got that there are potential active substances in Mongolian medicine Agsirga which can block the binding of ACE2 and 2019-nCoV at the molecular level.</p>


2020 ◽  
Vol 86 (8) ◽  
pp. 23-31
Author(s):  
V. G. Amelin ◽  
D. S. Bolshakov

The goal of the study is developing a methodology for determination of the residual amounts of quaternary ammonium compounds (QAC) in food products by UHPLC/high-resolution mass spectrometry after water-acetonitrile extraction of the determined components from the analyzed samples. The identification and determination of QAC was carried out on an «UltiMate 3000» ultra-high-performance liquid chromatograph (Thermo Scientific, USA) equipped with a «maXis 4G» high-resolution quadrupole-time-of-flight mass spectrometric detector and an ion spray «ionBooster» source (Bruker Daltonics, Germany). Samples of milk, cheese (upper cortical layer), dumplings, pork, chicken skin and ground beef were used as working samples. Optimal conditions are specified for chromatographic separation of the mixture of five QAC, two of them being a mixture of homologues with a linear structure (including isomeric forms). The identification of QAC is carried out by the retention time, exact mass of the ions, and coincidence of the mSigma isotopic distribution. The limits for QAC detection are 0.1 – 0.5 ng/ml, the determination limits are 1 ng/ml for aqueous standard solutions. The determinable content of QAC in food products ranges within 1 – 100 ng/g. The results of analysis revealed the residual amount of QAC present in all samples, which confirms data of numerous sources of information about active use of QAC-based disinfectants in the meat and dairy industry. The correctness of the obtained results is verified by introduction of the additives in food products at a level of 10 ng/g for each QAC. The relative standard deviation of the analysis results does not exceed 0.18. The duration of the analysis is 30 – 40 min.


Sign in / Sign up

Export Citation Format

Share Document