Effects of deep hypothermia on nitric oxide-induced cytotoxicity in primary cultures of cortical neurons

2003 ◽  
Vol 72 (5) ◽  
pp. 613-621 ◽  
Author(s):  
Sriranganathan Varathan ◽  
Satoshi Shibuta ◽  
Vidya Varathan ◽  
Motohide Takemura ◽  
Norifumi Yonehara ◽  
...  
2000 ◽  
Vol 150 (2) ◽  
pp. 335-348 ◽  
Author(s):  
Saadi Ghatan ◽  
Stephen Larner ◽  
Yoshito Kinoshita ◽  
Michal Hetman ◽  
Leena Patel ◽  
...  

Nitric oxide is a chemical messenger implicated in neuronal damage associated with ischemia, neurodegenerative disease, and excitotoxicity. Excitotoxic injury leads to increased NO formation, as well as stimulation of the p38 mitogen-activated protein (MAP) kinase in neurons. In the present study, we determined if NO-induced cell death in neurons was dependent on p38 MAP kinase activity. Sodium nitroprusside (SNP), an NO donor, elevated caspase activity and induced death in human SH-SY5Y neuroblastoma cells and primary cultures of cortical neurons. Concomitant treatment with SB203580, a p38 MAP kinase inhibitor, diminished caspase induction and protected SH-SY5Y cells and primary cultures of cortical neurons from NO-induced cell death, whereas the caspase inhibitor zVAD-fmk did not provide significant protection. A role for p38 MAP kinase was further substantiated by the observation that SB203580 blocked translocation of the cell death activator, Bax, from the cytosol to the mitochondria after treatment with SNP. Moreover, expressing a constitutively active form of MKK3, a direct activator of p38 MAP kinase promoted Bax translocation and cell death in the absence of SNP. Bax-deficient cortical neurons were resistant to SNP, further demonstrating the necessity of Bax in this mode of cell death. These results demonstrate that p38 MAP kinase activity plays a critical role in NO-mediated cell death in neurons by stimulating Bax translocation to the mitochondria, thereby activating the cell death pathway.


Author(s):  
Alexi Nott ◽  
James D. Robinson ◽  
Antonella Riccio

Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 262
Author(s):  
Qin-Wei Wu ◽  
Josef P. Kapfhammer

The CRISPR-Cas13 system based on a bacterial enzyme has been explored as a powerful new method for RNA manipulation. Due to the high efficiency and specificity of RNA editing/interference achieved by this system, it is currently being developed as a new therapeutic tool for the treatment of neurological and other diseases. However, the safety of this new generation of RNA therapies is still unclear. In this study, we constructed a vector expressing CRISPR-Cas13 under a constitutive neuron-specific promoter. CRISPR-Cas13 from Leptotrichia wadei was expressed in primary cultures of mouse cortical neurons. We found that the presence of CRISPR-Cas13 impedes the development of cultured neurons. These results show a neurotoxic action of Cas13 and call for more studies to test for and possibly mitigate the toxic effects of Cas13 enzymes in order to improve CRISPR-Cas13-based tools for RNA targeting.


2013 ◽  
Vol 386 (1-2) ◽  
pp. 251-258 ◽  
Author(s):  
Le Yang ◽  
Zhi-ming Yang ◽  
Nan Zhang ◽  
Zhen Tian ◽  
Shui-bing Liu ◽  
...  

2002 ◽  
Vol 81 (1) ◽  
pp. 130-141 ◽  
Author(s):  
Masashi Katsura ◽  
Keijiro Shuto ◽  
Yutaka Mohri ◽  
Makoto Shigeto ◽  
Seitaro Ohkuma

2001 ◽  
Vol 60 (1) ◽  
pp. 209-216 ◽  
Author(s):  
Luc Ferrari ◽  
Ning Peng ◽  
James R. Halpert ◽  
Edward T. Morgan

2004 ◽  
Vol 286 (5) ◽  
pp. L984-L991 ◽  
Author(s):  
Lisa K. Kelly ◽  
Stephen Wedgwood ◽  
Robin H. Steinhorn ◽  
Stephen M. Black

The use of exogenous nitric oxide (NO) has been shown to alter the regulation of other endothelially derived mediators of vascular tone, such as endothelin-1 (ET-1). However, the interaction between NO and ET-1 appears to be complex and remains incompletely understood. One of the major actions of NO is the activation of soluble guanylate cyclase (sGC) with the subsequent generation of cGMP. Therefore, we undertook this study to test the hypothesis that NO regulates ET-1 production via the activation of the sGC/cGMP pathway. The results obtained indicated that the exposure of primary cultures of 4-wk-old ovine pulmonary arterial endothelial cells (4-wk PAECs) to the long-acting NO donor DETA NONOate induced both a dose- and time-dependent decrease in secreted ET-1. This decrease in ET-1 secretion occurred in the absence of changes in endothelin-converting enzyme-1 or sGC expression but in conjunction with a decrease in prepro-ET-1 mRNA. The changes in ET-1 release were inversely proportional to the cellular cGMP content. Furthermore, the NO-independent activator of sGC, YC-1, or treatment with a cGMP analog also produced significant decreases in ET-1 secretion. Conversely, pretreatment with the sGC inhibitor ODQ blocked the NO-induced decrease in ET-1. Therefore, we conclude that exposure of 4-wk PAECs to exogenous NO decreases secreted ET-1 resulting from the activation of sGC and increased cGMP generation.


2005 ◽  
Vol 289 (3) ◽  
pp. C717-C726 ◽  
Author(s):  
My N. Helms ◽  
Ling Yu ◽  
Bela Malik ◽  
Dean J. Kleinhenz ◽  
C. Michael Hart ◽  
...  

Several studies have shown that nitric oxide (NO) inhibits Na+ transport in renal and alveolar monolayers. However, the mechanisms by which NO alters epithelial Na+ channel (ENaC) activity is unclear. Therefore, we examined the effect of applying the NO donor drug l-propanamine 3,2-hydroxy-2-nitroso-1-propylhidrazino (PAPA-NONOate) to cultured renal epithelial cells. A6 and M1 cells were maintained on permeable supports in medium containing 1.5 μM dexamethasone and 10% bovine serum. After 1.5 μM PAPA-NONOate was applied, amiloride-sensitive short-circuit current measurements decreased 29% in A6 cells and 44% in M1 cells. This differed significantly from the 3% and 19% decreases in A6 and M1 cells, respectively, treated with control donor compound ( P < 0.0005). Subsequent application of PAPA-NONOate to amiloride-treated control (no NONOate) A6 and M1 cells did not further decrease transepithelial current. In single-channel patch-clamp studies, NONOate significantly decreased ENaC open probability ( Po) from 0.186 ± 0.043 to 0.045 ± 0.009 ( n = 7; P < 0.05) without changing the unitary current. We also showed that aldosterone significantly decreased NO production in primary cultures of alveolar type II (ATII) epithelial cells. Because inducible nitric oxide synthase (iNOS) coimmunoprecipitated with the serum- and glucocorticoid-inducible kinase (SGK1) and both proteins colocalized in the cytoplasm (as shown in our studies in mouse ATII cells), SGK1 may also be important in regulating NO production in the alveolar epithelium. Our study also identified iNOS as a novel SGK1 phosphorylated protein (at S733 and S903 residues in miNOS) suggesting that one way in which SGK1 could increase Na+ transport is by altering iNOS production of NO.


2004 ◽  
Vol 124 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Masashi Katsura ◽  
Keijiro Shuto ◽  
Yutaka Mohri ◽  
Atsushi Tsujimura ◽  
Dai Shibata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document