On the decoupling of the IODZM from southern Africa Summer rainfall variability

2011 ◽  
Vol 32 (5) ◽  
pp. 727-746 ◽  
Author(s):  
Desmond Manatsa ◽  
Chris J. C. Reason ◽  
Geoffrey Mukwada
2013 ◽  
Vol 26 (5) ◽  
pp. 1654-1668 ◽  
Author(s):  
R. C. Blamey ◽  
C. J. C. Reason

Abstract A combination of numerous factors, including geographic position, regional orography, and local sea surface temperatures, means that subtropical southern Africa experiences considerable spatial and temporal variability in rainfall and is prone to both frequent flooding and drought events. One system that may contribute to rainfall variability in the region is the mesoscale convective complex (MCC). In this study, Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) data is used to document the precipitation produced by MCCs over southern Africa for the 1998–2006 period. Most of the rainfall associated with MCCs is found to occur over central Mozambique, extending southward to eastern South Africa. High precipitation totals associated with these systems also occur over the neighboring southwest Indian Ocean, particularly off the northeast coast of South Africa. MCCs are found to contribute up to 20% of the total summer rainfall (November–March) in parts of the eastern region of southern Africa. If the month of March is excluded from the analysis, then the contribution increases up to 24%. In general, the MCC summer rainfall contribution for most of the eastern region is approximately between 8% and 16%. Over the western interior and Botswana and Namibia, the MCC contribution is much less (<6%). It is also evident that there is considerable interannual variability associated with the contribution that these systems make to the total warm season rainfall.


Author(s):  
M.S. Humphries

Abstract Sediments are the most important source of Late Quaternary palaeoclimate information in southern Africa, but have been little studied from a geochemical perspective. However, recent advances in analytical techniques that allow rapid and near-continuous elemental records to be obtained from sedimentary sequences has resulted in the increasing use of elemental indicators for reconstructing climate. This paper explores the diverse information that can be acquired from the inorganic component of sediments and reviews some of the progress that has been made over the last two decades in interpreting the climatic history of southern Africa using elemental records. Despite the general scarcity of elemental records, excellent examples from the region exist, which provide some of the longest and most highly resolved sequences of environmental change currently available. Records from Tswaing crater and marine deposits on the southern KwaZulu-Natal coastline have provided rare glimpses into hydroclimate variability over the last 200 000 years, suggesting that summer rainfall in the region responded predominantly to insolation forcing on glacial-interglacial timescales. Over shorter timescales, lakes and wetlands found in the Wilderness embayment on the southern Cape coast and along the Maputaland coast in north-eastern South Africa have yielded highly-resolved elemental records of Holocene environmental change, providing insight into the changing interactions between tropical (e.g., El Niño-Southern Oscillation) and temperate (e.g., mid-latitude westerlies) climate systems affecting rainfall variability in the region. The examples discussed demonstrate the multiple environmental processes that can be inferred from elemental proxies and the unique insight this can provide in advancing our understanding of past climate change on different timescales. The interpretation of geochemical data can be complicated by the complex nature of sedimentary environments, various proxy assumptions and analytical challenges, and the reliability of sediment-based climate reconstructions is substantially enhanced through multi-proxy approaches.


2002 ◽  
Vol 33 (4) ◽  
pp. 305-318 ◽  
Author(s):  
Lars Hydén

Lesotho is located approximately at latitude 30 degrees south in the interior of Southern Africa. The mesoscale climate is complicated and governed by various weather systems. The inter-annual rainfall variability is great, resulting in low food security, since the growing of crops in the Lesotho Lowlands is almost exclusively rain-fed. Reliable forecasts of austral summer rainfall are thus valuable. Earlier research has shown that the sea surface temperatures (SST) in the Indian Ocean to some extent govern rainfall in Southern Africa. The research presented is part of an on-going project to find suitable oceanographic and meteorological predictors, which can be used in a forecast model for summer rainfall, to be developed later. The first part of this paper investigates the correlation between the average SSTs in the Equatorial Indian Ocean, the Central Indian Ocean, and the Agulhas Gyre, respectively, and rainfall two months later in the Lesotho Lowlands during early austral summer, October until December for the period 1949-1995. No significant correlations have been found, probably because the three ocean areas are too large. In the second part of this paper the monthly SST in 132 grid squares in the Indian Ocean were investigated and found to be correlated with rainfall in the Lesotho Lowlands two months later, October until March. Significant correlations have been found between the SSTs and certain ocean areas and December, January, and February rainfall, respectively. There is significant negative correlation between December rainfall and October SST in an ocean area between Kenya and Somalia across the Indian Ocean to Sumatra. In the area where the Somali Current flows there is also significant correlation between December SST and December rainfall. January rainfall is significantly negatively correlated with November SST in an ocean area, northeast of Madagascar. February rainfall is significantly, but weakly, negatively correlated with SST in a narrow north-south corridor in the Eastern Indian Ocean from the equator down to latitude 40 degrees south.


2015 ◽  
Vol 28 (23) ◽  
pp. 9489-9497 ◽  
Author(s):  
Alice M. Grimm ◽  
C. J. C. Reason

Abstract Teleconnection of climate anomalies between various parts of the tropics and extratropics is a well-established feature of the climate system. Building on previous work showing that a teleconnection exists between the South American monsoon system and interannual summer rainfall variability over southern Africa, this study considers intraseasonal variability over these landmasses. It is shown that strong teleconnections exist between South African daily rainfall and that over various areas of South America, with the latter leading by 4–5 days, for both winter and summer, involving regions with strong rainfall in these seasons. During the summer, the mechanisms involve both a modulation of the local Walker cell as well as extratropical Rossby wave trains. For winter, the latter mechanism is more important. While in summer tropical convective anomalies over South America play an important role, in winter the subtropics become more important. In both cases, these modulations lead to regional changes in circulation over southern Africa that are favorable for the dominant synoptic rainfall-producing weather systems such as cutoff lows and tropical extratropical cloud bands.


2013 ◽  
Vol 26 (15) ◽  
pp. 5523-5536 ◽  
Author(s):  
Bingyi Wu ◽  
Renhe Zhang ◽  
Rosanne D'Arrigo ◽  
Jingzhi Su

Abstract Using NCEP–NCAR reanalysis and Japanese 25-yr Reanalysis (JRA-25) data, this paper investigates the association between winter sea ice concentration (SIC) in Baffin Bay southward to the eastern coast of Newfoundland, and the ensuing summer atmospheric circulation over the mid- to high latitudes of Eurasia. It is found that winter SIC anomalies are significantly correlated with the ensuing summer 500-hPa height anomalies that dynamically correspond to the Eurasian pattern of 850-hPa wind variability and significantly influence summer rainfall variability over northern Eurasia. Spring atmospheric circulation anomalies south of Newfoundland, associated with persistent winter–spring SIC and a horseshoe-like pattern of sea surface temperature (SST) anomalies in the North Atlantic, act as a bridge linking winter SIC and the ensuing summer atmospheric circulation anomalies over northern Eurasia. Indeed, this study only reveals the association based on observations and simple simulation experiments with SIC forcing. The more precise mechanism for this linkage needs to be addressed in future work using numerical simulations with SIC and SST as the external forcings. The results herein have the following implication: Winter SIC west of Greenland is a possible precursor for summer atmospheric circulation and rainfall anomalies over northern Eurasia.


2013 ◽  
Vol 9 (2) ◽  
pp. 641-656 ◽  
Author(s):  
C. A. Grove ◽  
J. Zinke ◽  
F. Peeters ◽  
W. Park ◽  
T. Scheufen ◽  
...  

Abstract. Pacific Ocean sea surface temperatures (SST) influence rainfall variability on multidecadal and interdecadal timescales in concert with the Pacific Decadal Oscillation (PDO) and Interdecadal Pacific Oscillation (IPO). Rainfall variations in locations such as Australia and North America are therefore linked to phase changes in the PDO. Furthermore, studies have suggested teleconnections exist between the western Indian Ocean and Pacific Decadal Variability (PDV), similar to those observed on interannual timescales related to the El Niño Southern Oscillation (ENSO). However, as instrumental records of rainfall are too short and sparse to confidently assess multidecadal climatic teleconnections, here we present four coral climate archives from Madagascar spanning up to the past 300 yr (1708–2008) to assess such decadal variability. Using spectral luminescence scanning to reconstruct past changes in river runoff, we identify significant multidecadal and interdecadal frequencies in the coral records, which before 1900 are coherent with Asian-based PDO reconstructions. This multidecadal relationship with the Asian-based PDO reconstructions points to an unidentified teleconnection mechanism that affects Madagascar rainfall/runoff, most likely triggered by multidecadal changes in North Pacific SST, influencing the Asian Monsoon circulation. In the 20th century we decouple human deforestation effects from rainfall-induced soil erosion by pairing luminescence with coral geochemistry. Positive PDO phases are associated with increased Indian Ocean temperatures and runoff/rainfall in eastern Madagascar, while precipitation in southern Africa and eastern Australia declines. Consequently, the negative PDO phase that started in 1998 may contribute to reduced rainfall over eastern Madagascar and increased precipitation in southern Africa and eastern Australia. We conclude that multidecadal rainfall variability in Madagascar and the western Indian Ocean needs to be taken into account when considering water resource management under a future warming climate.


2012 ◽  
Vol 41 (5-6) ◽  
pp. 1199-1212 ◽  
Author(s):  
Neil C. G. Hart ◽  
Chris J. C. Reason ◽  
Nicolas Fauchereau

Sign in / Sign up

Export Citation Format

Share Document