Wave climate changes in the North Atlantic and North Sea

2007 ◽  
Vol 11 (5) ◽  
pp. 545-558 ◽  
Author(s):  
S. Bacon ◽  
D. J. T. Carter
2018 ◽  
Vol 45 (21) ◽  
pp. 11,827-11,836 ◽  
Author(s):  
Jason Holt ◽  
Jeff Polton ◽  
John Huthnance ◽  
Sarah Wakelin ◽  
Enda O'Dea ◽  
...  

2005 ◽  
Vol 2 (1) ◽  
pp. 87-96 ◽  
Author(s):  
H. Thomas ◽  
Y. Bozec ◽  
H. J. W. de Baar ◽  
K. Elkalay ◽  
M. Frankignoulle ◽  
...  

Abstract. A carbon budget has been established for the North Sea, a shelf sea on the NW European continental shelf. The carbon exchange fluxes with the North Atlantic Ocean dominate the gross carbon budget. The net carbon budget – more relevant to the issue of the contribution of the coastal ocean to the marine carbon cycle – is dominated by the carbon inputs from rivers, the Baltic Sea and the atmosphere. The North Sea acts as a sink for organic carbon and thus can be characterised as a heterotrophic system. The dominant carbon sink is the final export to the North Atlantic Ocean. More than 90% of the CO2 taken up from the atmosphere is exported to the North Atlantic Ocean making the North Sea a highly efficient continental shelf pump for carbon.


Author(s):  
V.M. Khokhlov ◽  
H.O. Borovska ◽  
O.V. Umanska ◽  
M.S. Tenetko

The paper analyzes spatiotemporal features the indices of hot, cold and precipitation that are related to weather conditions. The temperature in Ukraine tends to be higher, which is the main regional feature of global climate changes. The North Atlantic Oscillation had an influence on the precipitation in Ukraine – weather is rainier during its negative phases. Also, colder night and hotter days were more frequent during negative phases of the NAO. This fact can be explained by enhancing meridional flows in Ukraine. The wavelet analysis also revealed an impact of the NAO on temperature anomalies – positive phases determined increasing monthly minimum temperatures before the 1980s and decreasing ones after 1980s. Also, the wavelet analysis showed that the Nor-th Atlantic Oscillation influenced the precipitation in northern and southern parts of Ukraine in different ways.


Geosciences ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 119
Author(s):  
Gloria Martin-Garcia

Integrative studies on paleoclimate variations over oceanic and continental regions are scarce. Though it is known that Earth’s climate is strongly affected by sea-air exchanges of heat and moisture, the role of oceans in climate variations over land remains relatively unexplored. With the aim to unveil this influence, the present work studies major climate oscillations in the North Atlantic region and Europe during the Quaternary, focusing on the oceanic mechanisms that were related to them. During this period, the European climate experienced long-term and wide-amplitude glacial-interglacial oscillations. A covariance between the North Atlantic sea surface temperature and climate signals over the continent is especially observed in Southern Europe. The most severe and drastic climate changes occurred in association to deglaciations, as a consequence of major oceanographic reorganizations that affected atmospheric circulation and ocean-atmosphere heat-flow, which led to variation of temperature and precipitation inland. Most deglaciations began when Northern Hemisphere summer insolation was maximal. Increased heating facilitated the rapid ice-sheet collapse and the massive release of fresh water into the Northern Atlantic, which triggered the weakening or even the shutdown of the North Atlantic Deep Water (NADW) formation. Though the extension of ice-sheets determined the high-latitude European climate, the climate was more influenced by rapid variations of ice volume, deep-water formation rate, and oceanic and atmospheric circulation in middle and subtropical latitudes. In consequence, the coldest stadials in the mid-latitude North Atlantic and Europe since the early Pleistocene coincided with Terminations (glacial/interglacial transitions) and lesser ice-sheet depletions. They were related with decreases in the NADW formation rate that occurred at these times and the subsequent advection of subpolar waters along the western European margin. In Southern Europe, steppe communities substituted temperate forests. Once the freshwater perturbation stopped and the overturning circulation resumed, very rapid and wide-amplitude warming episodes occurred (interstadials). On the continent, raised temperature and precipitations allowed the rapid expansion of moisture-requiring vegetation.


2005 ◽  
Vol 62 (7) ◽  
pp. 1205-1215 ◽  
Author(s):  
J. Alheit ◽  
C. Möllmann ◽  
J. Dutz ◽  
G. Kornilovs ◽  
P. Loewe ◽  
...  

Abstract The index of the North Atlantic Oscillation, the dominant mode of climatic variability in the North Atlantic region, changed in the late 1980s (1987–1989) from a negative to a positive phase. This led to regime shifts in the ecology of the North Sea (NS) and the central Baltic Sea (CBS), which involved all trophic levels in the pelagial of these two neighbouring continental shelf seas. Increasing air and sea surface temperatures, which affected critical physical and biological processes, were the main direct and indirect driving forces. After 1987, phytoplankton biomass in both systems increased and the growing season was extended. The composition of phyto- and zooplankton communities in both seas changed conspicuously, e.g. dinoflagellate abundance increased and diatom abundance decreased in the CBS. Key copepod species that are essential in fish diets experienced pronounced changes in biomass. Abundance of Calanus finmarchicus (NS) and Pseudocalanus sp. (CBS) fell to low levels, whereas C. helgolandicus (NS) and Temora longicornis and Acartia spp. (CBS) were persistently abundant. These changes in biomass of different copepod species had dramatic consequences on biomass, fisheries, and landings of key fish species: North Sea cod declined, cod in the CBS remained at low levels, and CBS sprat reached unprecedented high biomass levels resulting in high yields. The synchronous regime shifts in NS and CBS resulted in profound changes in both marine ecosystems. However, the reaction of fish populations to the bottom-up mechanisms caused by the same climatic shift was very different for the three fish stocks.


Boreas ◽  
2008 ◽  
Vol 35 (1) ◽  
pp. 23-34 ◽  
Author(s):  
CAMILLA S. ANDRESEN ◽  
SVANTE BJÖRCK ◽  
MATS RUNDGREN ◽  
DANIEL J. CONLEY ◽  
CATHERINE JESSEN

Sign in / Sign up

Export Citation Format

Share Document