Two-sided impacts of warm pool SSTs on Australian precipitation changes

2016 ◽  
Vol 36 (15) ◽  
pp. 4697-4704 ◽  
Author(s):  
Lei Fan ◽  
Sang-Ik Shin ◽  
Zhengyu Liu ◽  
Qinyu Liu
2014 ◽  
Vol 33 (2) ◽  
pp. 87-96 ◽  
Author(s):  
Shuai ZHANG ◽  
Tiegang LI ◽  
Fengming CHANG ◽  
Haixia WANG ◽  
Zhifang XIONG ◽  
...  

2021 ◽  
Vol 255 ◽  
pp. 106819 ◽  
Author(s):  
Can Zhang ◽  
Cheng Zhao ◽  
Aifeng Zhou ◽  
Haixia Zhang ◽  
Weiguo Liu ◽  
...  

1999 ◽  
Vol 16 (3) ◽  
pp. 378-394 ◽  
Author(s):  
Li Chongyin ◽  
Mu Mingquan ◽  
Zhou Guangqing
Keyword(s):  

2021 ◽  
Vol 7 (6) ◽  
pp. eabb7118
Author(s):  
E. Harris ◽  
E. Diaz-Pines ◽  
E. Stoll ◽  
M. Schloter ◽  
S. Schulz ◽  
...  

Nitrous oxide is a powerful greenhouse gas whose atmospheric growth rate has accelerated over the past decade. Most anthropogenic N2O emissions result from soil N fertilization, which is converted to N2O via oxic nitrification and anoxic denitrification pathways. Drought-affected soils are expected to be well oxygenated; however, using high-resolution isotopic measurements, we found that denitrifying pathways dominated N2O emissions during a severe drought applied to managed grassland. This was due to a reversible, drought-induced enrichment in nitrogen-bearing organic matter on soil microaggregates and suggested a strong role for chemo- or codenitrification. Throughout rewetting, denitrification dominated emissions, despite high variability in fluxes. Total N2O flux and denitrification contribution were significantly higher during rewetting than for control plots at the same soil moisture range. The observed feedbacks between precipitation changes induced by climate change and N2O emission pathways are sufficient to account for the accelerating N2O growth rate observed over the past decade.


2021 ◽  
Vol 10 (3) ◽  
pp. 129
Author(s):  
Vincent Nzabarinda ◽  
Anming Bao ◽  
Wenqiang Xu ◽  
Solange Uwamahoro ◽  
Madeleine Udahogora ◽  
...  

Vegetation is vital, and its greening depends on access to water. Thus, precipitation has a considerable influence on the health and condition of vegetation and its amount and timing depend on the climatic zone. Therefore, it is extremely important to monitor the state of vegetation according to the movements of precipitation in climatic zones. Although a lot of research has been conducted, most of it has not paid much attention to climatic zones in the study of plant health and precipitation. Thus, this paper aims to study the plant health in five African climatic zones. The linear regression model, the persistence index (PI), and the Pearson correlation coefficients were applied for the third generation Normalized Difference Vegetation Index (NDVI3g), with Climate Hazard Group infrared precipitation and Climate Change Initiative Land Cover for 34 years (1982 to 2015). This involves identifying plants in danger of extinction or in dramatic decline and the relationship between vegetation and rainfall by climate zone. The forest type classified as tree cover, broadleaved, deciduous, closed to open (>15%) has been degraded to 74% of its initial total area. The results also revealed that, during the study period, the vegetation of the tropical, polar, and warm temperate zones showed a higher rate of strong improvement. Although arid and boreal zones show a low rate of strong improvement, they are those that experience a low percentage of strong degradation. The continental vegetation is drastically decreasing, especially forests, and in areas with low vegetation, compared to more vegetated areas, there is more emphasis on the conservation of existing plants. The variability in precipitation is excessively hard to tolerate for more types of vegetation.


2013 ◽  
Vol 26 (4) ◽  
pp. 1249-1267 ◽  
Author(s):  
Chunzai Wang ◽  
Liping Zhang ◽  
Sang-Ki Lee

Abstract The response of freshwater flux and sea surface salinity (SSS) to the Atlantic warm pool (AWP) variations from seasonal to multidecadal time scales is investigated by using various reanalysis products and observations. All of the datasets show a consistent response for all time scales: A large (small) AWP is associated with a local freshwater gain (loss) to the ocean, less (more) moisture transport across Central America, and a local low (high) SSS. The moisture budget analysis demonstrates that the freshwater change is dominated by the atmospheric mean circulation dynamics, while the effect of thermodynamics is of secondary importance. Further decomposition points out that the contribution of the mean circulation dynamics primarily arises from its divergent part, which mainly reflects the wind divergent change in the low level as a result of SST change. In association with a large (small) AWP, warmer (colder) than normal SST over the tropical North Atlantic can induce anomalous low-level convergence (divergence), which favors anomalous ascent (decent) and thus generates more (less) precipitation. On the other hand, a large (small) AWP weakens (strengthens) the trade wind and its associated westward moisture transport to the eastern North Pacific across Central America, which also favors more (less) moisture residing in the Atlantic and hence more (less) precipitation. The results imply that variability of freshwater flux and ocean salinity in the North Atlantic associated with the AWP may have the potential to affect the Atlantic meridional overturning circulation.


2013 ◽  
Vol 26 (13) ◽  
pp. 4710-4724 ◽  
Author(s):  
Michael Mayer ◽  
Kevin E. Trenberth ◽  
Leopold Haimberger ◽  
John T. Fasullo

Abstract The variability of zonally resolved tropical energy budgets in association with El Niño–Southern Oscillation (ENSO) is investigated. The most recent global atmospheric reanalyses from 1979 to 2011 are employed with removal of apparent discontinuities to obtain best possible temporal homogeneity. The growing length of record allows a more robust analysis of characteristic patterns of variability with cross-correlation, composite, and EOF methods. A quadrupole anomaly pattern is found in the vertically integrated energy divergence associated with ENSO, with centers over the Indian Ocean, the Indo-Pacific warm pool, the eastern equatorial Pacific, and the Atlantic. The smooth transition, particularly of the main maxima of latent and dry static energy divergence, from the western to the eastern Pacific is found to require at least two EOFs to be adequately described. The canonical El Niño pattern (EOF-1) and a transition pattern (EOF-2; referred to as El Niño Modoki by some authors) form remarkably coherent ENSO-related anomaly structures of the tropical energy budget not only over the Pacific but throughout the tropics. As latent and dry static energy divergences show strong mutual cancellation, variability of total energy divergence is smaller and more tightly coupled to local sea surface temperature (SST) anomalies and is mainly related to the ocean heat discharge and recharge during ENSO peak phases. The complexity of the structures throughout the tropics and their evolution during ENSO events along with their interactions with the annual cycle have often not been adequately accounted for; in particular, the El Niño Modoki mode is but part of the overall evolutionary patterns.


Sign in / Sign up

Export Citation Format

Share Document