A simple method to assess the added value using high-resolution climate distributions: application to the EURO-CORDEX daily precipitation

2017 ◽  
Vol 38 (3) ◽  
pp. 1484-1498 ◽  
Author(s):  
Pedro M. M. Soares ◽  
Rita M. Cardoso
2015 ◽  
Vol 47 (3-4) ◽  
pp. 719-737 ◽  
Author(s):  
A. Casanueva ◽  
S. Kotlarski ◽  
S. Herrera ◽  
J. Fernández ◽  
J. M. Gutiérrez ◽  
...  

2021 ◽  
Author(s):  
James Ciarlo ◽  
Erika Coppola ◽  
Emanuela Pichelli ◽  
Jose Abraham Torres Alavez ◽  

<p>Downscaling data from General Circulation Models (GCMs) with Regional Climate Models (RCMs) is a computationally expensive process, even more so running at the convection permitting scale (CP). Despite the high-resolution products of these simulations, the Added Value (AV) of these runs compared to their driving models is an important factor for consideration. A new method was recently developed to quantify the AV of historical simulations as well as the Climate Change Downscaling Signal (CCDS) of forecast runs. This method presents these quantities spatially and thus the specific regions with the most AV can be identified and understood.</p><p>An analysis of daily precipitation from a 55-model EURO-CORDEX ensemble (at 12 km resolution) was assessed using this method. It revealed positive AV throughout the domain with greater emphasis in regions of complex topography, coast-lines, and the tropics. Similar CCDS was obtained when assessing the RCP 8.5 far future runs in these domains. This paper looks more closely at the CCDS obtained with this method and compares it to other climate change signals described in other studies.</p><p>The same method is now being applied to assess the AV and CCDS of daily precipitation from an ensemble of models at the CP scale (~3 km) over different domains within Europe. The current stage of the analysis is also looking into the AV of using hourly precipitation instead of daily.</p>


2016 ◽  
Author(s):  
Hossein Tabari ◽  
Rozemien De Troch ◽  
Olivier Giot ◽  
Rafiq Hamdi ◽  
Piet Termonia ◽  
...  

Abstract. This study explores whether climate models with higher spatial resolution provide higher accuracy for precipitation simulations and/or different climate change signals. The outputs from two convection-permitting climate models (ALARO and CCLM) with a spatial resolution of 3–4 km are compared with those from the coarse scale driving models or reanalysis data for simulating/projecting daily and sub-daily precipitation quantiles. The high-resolution ALARO and CCLM models reveal an added value to capture sub-daily precipitation extremes during summer compared to the driving GCMs and reanalysis data. Further validation of historical climate simulations based on design precipitation statistics derived from intensity–duration–frequency (IDF) curves shows a better match of the convection-permitting model results with the observations-based IDF statistics. Results moreover indicate that one has to be careful in assuming spatial scale independency of climate change signals for the delta change downscaling method, as high-resolution models may show larger changes in extreme precipitation. These larger changes appear to be dependent on the climate model, since such intensification is not observed for the ALARO model.


2016 ◽  
Vol 20 (9) ◽  
pp. 3843-3857 ◽  
Author(s):  
Hossein Tabari ◽  
Rozemien De Troch ◽  
Olivier Giot ◽  
Rafiq Hamdi ◽  
Piet Termonia ◽  
...  

Abstract. This study explores whether climate models with higher spatial resolutions provide higher accuracy for precipitation simulations and/or different climate change signals. The outputs from two convection-permitting climate models (ALARO and CCLM) with a spatial resolution of 3–4 km are compared with those from the coarse-scale driving models or reanalysis data for simulating/projecting daily and sub-daily precipitation quantiles. Validation of historical design precipitation statistics derived from intensity–duration–frequency (IDF) curves shows a better match of the convection-permitting model results with the observations-based IDF statistics compared to the driving GCMs and reanalysis data. This is the case for simulation of local sub-daily precipitation extremes during the summer season, while the convection-permitting models do not appear to bring added value to simulation of daily precipitation extremes. Results moreover indicate that one has to be careful in assuming spatial-scale independency of climate change signals for the delta change downscaling method, as high-resolution models may show larger changes in extreme precipitation. These larger changes appear to be dependent on the timescale, since such intensification is not observed for daily timescales for both the ALARO and CCLM models.


Author(s):  
Moritz Bandhauer ◽  
Francesco Isotta ◽  
Monika Lakatos ◽  
Cristian Lussana ◽  
Line Båserud ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 2040
Author(s):  
Xin Yan ◽  
Hua Chen ◽  
Bingru Tian ◽  
Sheng Sheng ◽  
Jinxing Wang ◽  
...  

High-spatial-resolution precipitation data are of great significance in many applications, such as ecology, hydrology, and meteorology. Acquiring high-precision and high-resolution precipitation data in a large area is still a great challenge. In this study, a downscaling–merging scheme based on random forest and cokriging is presented to solve this problem. First, the enhanced decision tree model, which is based on random forest from machine learning algorithms, is used to reduce the spatial resolution of satellite daily precipitation data to 0.01°. The downscaled satellite-based daily precipitation is then merged with gauge observations using the cokriging method. The scheme is applied to downscale the Global Precipitation Measurement Mission (GPM) daily precipitation product over the upstream part of the Hanjiang Basin. The experimental results indicate that (1) the downscaling model based on random forest can correctly spatially downscale the GPM daily precipitation data, which retains the accuracy of the original GPM data and greatly improves their spatial details; (2) the GPM precipitation data can be downscaled on the seasonal scale; and (3) the merging method based on cokriging greatly improves the accuracy of the downscaled GPM daily precipitation data. This study provides an efficient scheme for generating high-resolution and high-quality daily precipitation data in a large area.


2018 ◽  
Vol 10 (1) ◽  
pp. 235-249 ◽  
Author(s):  
Cristian Lussana ◽  
Tuomo Saloranta ◽  
Thomas Skaugen ◽  
Jan Magnusson ◽  
Ole Einar Tveito ◽  
...  

Abstract. The conventional climate gridded datasets based on observations only are widely used in atmospheric sciences; our focus in this paper is on climate and hydrology. On the Norwegian mainland, seNorge2 provides high-resolution fields of daily total precipitation for applications requiring long-term datasets at regional or national level, where the challenge is to simulate small-scale processes often taking place in complex terrain. The dataset constitutes a valuable meteorological input for snow and hydrological simulations; it is updated daily and presented on a high-resolution grid (1 km of grid spacing). The climate archive goes back to 1957. The spatial interpolation scheme builds upon classical methods, such as optimal interpolation and successive-correction schemes. An original approach based on (spatial) scale-separation concepts has been implemented which uses geographical coordinates and elevation as complementary information in the interpolation. seNorge2 daily precipitation fields represent local precipitation features at spatial scales of a few kilometers, depending on the station network density. In the surroundings of a station or in dense station areas, the predictions are quite accurate even for intense precipitation. For most of the grid points, the performances are comparable to or better than a state-of-the-art pan-European dataset (E-OBS), because of the higher effective resolution of seNorge2. However, in very data-sparse areas, such as in the mountainous region of southern Norway, seNorge2 underestimates precipitation because it does not make use of enough geographical information to compensate for the lack of observations. The evaluation of seNorge2 as the meteorological forcing for the seNorge snow model and the DDD (Distance Distribution Dynamics) rainfall–runoff model shows that both models have been able to make profitable use of seNorge2, partly because of the automatic calibration procedure they incorporate for precipitation. The seNorge2 dataset 1957–2015 is available at https://doi.org/10.5281/zenodo.845733. Daily updates from 2015 onwards are available at http://thredds.met.no/thredds/catalog/metusers/senorge2/seNorge2/provisional_archive/PREC1d/gridded_dataset/catalog.html.


Sign in / Sign up

Export Citation Format

Share Document