Evaluation of evapotranspiration estimates from observed and reanalysis data sets over Indian region

2019 ◽  
Vol 39 (15) ◽  
pp. 5791-5800 ◽  
Author(s):  
G. Purnadurga ◽  
T.V. Lakshmi Kumar ◽  
K. Koteswara Rao ◽  
Humberto Barbosa ◽  
R.K. Mall
2016 ◽  
Vol 16 (7) ◽  
pp. 4497-4509 ◽  
Author(s):  
Sanjeev Dwivedi ◽  
M. S. Narayanan ◽  
M. Venkat Ratnam ◽  
D. Narayana Rao

Abstract. Monsoon inversion (MI) over the Arabian Sea (AS) is one of the important characteristics associated with the monsoon activity over Indian region during summer monsoon season. In the present study, we have used 5 years (2009–2013) of temperature and water vapour measurement data obtained from satellite sounder instrument, an Infrared Atmospheric Sounding Interferometer (IASI) onboard MetOp satellite, in addition to ERA-Interim data, to study their characteristics. The lower atmospheric data over the AS have been examined first to identify the areas where MIs are predominant and occur with higher strength. Based on this information, a detailed study has been made to investigate their characteristics separately in the eastern AS (EAS) and western AS (WAS) to examine their contrasting features. The initiation and dissipation times of MIs, their percentage occurrence, strength, etc., has been examined using the huge database. The relation with monsoon activity (rainfall) over Indian region during normal and poor monsoon years is also studied. WAS ΔT values are  ∼  2 K less than those over the EAS, ΔT being the temperature difference between 950 and 850 hPa. A much larger contrast between the WAS and EAS in ΔT is noticed in ERA-Interim data set vis-à-vis those observed by satellites. The possibility of detecting MI from another parameter, refractivity N, obtained directly from another satellite constellation of GPS Radio Occultation (RO) (COSMIC), has also been examined. MI detected from IASI and Atmospheric Infrared Sounder (AIRS) onboard the NOAA satellite have been compared to see how far the two data sets can be combined to study the MI characteristics. We suggest MI could also be included as one of the semipermanent features of southwest monsoon along with the presently accepted six parameters.


2015 ◽  
Vol 15 (23) ◽  
pp. 35277-35312
Author(s):  
Sanjeev Dwivedi ◽  
M. S. Narayanan ◽  
M. Venkat Ratnam ◽  
D. Narayana Rao

Abstract. Monsoon inversions (MIs) over Arabian Sea (AS) are an important characteristic associated with the monsoon activity over Indian region during summer monsoon season. In the present study, we have used five years (2009–2013) data of temperature and water vapor profiles obtained from satellite sounder instrument, Infrared Atmospheric Sounding Interferometer (IASI) onboard MetOp satellite, besides ERA-Interim data, to study their characteristics. The lower atmospheric data over the AS have been examined first to identify the areas where monsoon inversions are predominant and occur with higher strength. Based on this information, a detailed study has been made to investigate their characteristics separately in eastern AS (EAS) and western AS (WAS) to examine their contrasting features. The initiation and dissipation times of MI, their percentage occurrence, strength etc., has been examined using the huge data base. The relation with monsoon activity (rainfall) over Indian region during normal and poor monsoon years is also studied. WAS ΔT values are ~ 2 K less than those over the EAS, ΔT being temperature difference between 950 and 850 hPa. A much larger contrast between WAS and EAS in Δ\\textit{T} is noticed in ERA-Interim dataset Vis a Vis those observed by satellites. The possibility of detecting MI from another parameter, Refractivity $N$, obtained directly from another satellite constellation of GPS RO (COSMIC), has also been examined. MI detected from IASI and Atmospheric InfraRed Sounder (AIRS) sounder onboard NOAA satellite have been compared to see how far the two data sets can be combined to study the MI characteristics. We suggest MI could also be included as one of the semi-permanent features of southwest monsoon along with the presently accepted six parameters.


2012 ◽  
Vol 27 (3) ◽  
pp. 263-271 ◽  
Author(s):  
Monica Cristina Damião Mendes ◽  
Iracema F. A. Cavalcanti ◽  
Dirceu Luis Herdies

An assessment of blocking episodes over the Southern Hemisphere, selected from the Era-40 and NCEP/NCAR reanalysis are presented in this study. Blocking can be defined by an objective index based on two 500 hPa geopotential height meridional gradients. The seasonal cycle and preferential areas of occurrence are well reproduced by the two data sets. In both reanalysis used in this study, South Pacific and Oceania were the preferred regions for blocking occurrence, followed by the Atlantic Ocean. However the results revealed differences in frequencies of occurrences, which may be related to the choice of assimilation scheme employed to produce the reanalysis data sets. It is important to note that the ERA 40 and NCEP/NCAR reanalysis were produced using consistent models and assimilation schemes throughout the whole reanalyzed period, which are different for each set.


2020 ◽  
Vol 7 (2) ◽  
Author(s):  
P. Malakar ◽  
A.P. Kesarkar ◽  
J.N. Bhate ◽  
V. Singh ◽  
A. Deshamukhya

2019 ◽  
Vol 54 (1-2) ◽  
pp. 231-245 ◽  
Author(s):  
Yin Zhao ◽  
Tianjun Zhou

Abstract The total column water vapor (TCWV) over the Tibetan Plateau (TP) is one important indicator of the Asian water tower, and the changes in the TCWV are vital to the climate and ecosystem in downstream regions. However, the observational data is insufficient to understand the changes in the TCWV due to the high elevation of the TP. Satellite and reanalysis data can be used as substitutes, but their quality needs to be evaluated. In this study, based on a homogenized radiosonde data set, a comprehensive evaluation of the TCWV over the TP derived from two satellite data sets (AIRS-only and AIRS/AMSU) and seven existing reanalysis data sets (MERRA, MERRA2, NCEP1, NCEP2, CFSR, ERA-I, JRA55) is performed in the context of the climatology, annual cycle and interannual variability. Both satellite data sets reasonably reproduce the characteristics of the TCWV over the TP. All reanalysis data sets perform well in reproducing the annual mean climatology of the TCWV over the TP (R = 0.99), except for NCEP1 (R = 0.96) and NCEP2 (R = 0.92). ERA-I is more reliable in capturing the spatial pattern of the annual cycle (R = 0.94), while NCEP1 shows the lowest skill (R = 0.72). JRA55 performs best in capturing the features of the interannual coherent variation (EOF1, R = 0.97). The skill-weighted ensemble mean of the reanalysis data performs better than the unweighted ensemble mean and most of the single reanalysis data sets. The evaluation provides essential information on both the strengths and weaknesses of the major satellite and reanalysis data sets in measuring the total column water vapor over the TP.


2019 ◽  
Author(s):  
Masatomo Fujiwara ◽  
Patrick Martineau ◽  
Jonathon S. Wright

Abstract. The global response of air temperature at 2 metre above the surface to the eruptions of Mount Agung in March 1963, El Chichón in April 1982, and Mount Pinatubo in June 1991 is investigated using 11 global atmospheric reanalysis data sets (JRA-55, JRA-25, MERRA-2, MERRA, ERA-Interim, ERA-40, CFSR, NCEP-NCAR R-1, 20CR version 2c, ERA-20C, and CERA-20C). Multiple linear regression (MLR) is applied to the monthly mean time series of temperature for two periods, 1980–2010 (for 10 reanalyses) and 1958–2001 (for six reanalyses), by considering explanatory factors of seasonal harmonics, linear trends, Quasi-Biennial Oscillation (QBO), solar cycle, tropical sea surface temperature (SST) variations in the Pacific, Indian, and Atlantic Oceans, and Arctic SST variations. Empirical orthogonal function (EOF) analysis is applied to these climatic indices to obtain a set of orthogonal indices to be used for the MLR. The residuals of the MLR are used to define the volcanic signals for the three eruptions separately. First, latitudinally averaged time series of the residuals are investigated and compared with the results from previous studies. Then, the geographical distribution of the response during the peak cooling period after each eruption is investigated. In general, different reanalyses show similar geographical patterns of the response, but with the largest differences in the polar regions. The Pinatubo response shows largest average cooling in the 60° N–60° S region among the three eruptions, with a peak cooling of 0.10–0.15 K. The El Chichón response shows slightly larger cooling in the NH than in the Southern Hemisphere (SH), while the Agung response shows larger cooling in the SH. These hemispheric differences are consistent with the distribution of stratospheric aerosol optical depth after these eruptions; however, the peak cooling after these two eruptions is comparable in magnitude to unexplained cooling events in other periods without volcanic influence. Other methods in which the MLR model is used with different sets of indices are also tested, and it is found that careful treatment of tropical SST variability is necessary to evaluate the surface response to volcanic eruptions in observations and reanalyses.


2017 ◽  
Vol 17 (2) ◽  
pp. 855-866 ◽  
Author(s):  
Leon S. Friedrich ◽  
Adrian J. McDonald ◽  
Gregory E. Bodeker ◽  
Kathy E. Cooper ◽  
Jared Lewis ◽  
...  

Abstract. Location information from long-duration super-pressure balloons flying in the Southern Hemisphere lower stratosphere during 2014 as part of X Project Loon are used to assess the quality of a number of different reanalyses including National Centers for Environmental Prediction Climate Forecast System version 2 (NCEP-CFSv2), European Centre for Medium-Range Weather Forecasts (ERA-Interim), NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and the recently released MERRA version 2. Balloon GPS location information is used to derive wind speeds which are then compared with values from the reanalyses interpolated to the balloon times and locations. All reanalysis data sets accurately describe the winds, with biases in zonal winds of less than 0.37 m s−1 and meridional biases of less than 0.08 m s−1. The standard deviation on the differences between Loon and reanalyses zonal winds is latitude-dependent, ranging between 2.5 and 3.5 m s−1, increasing equatorward. Comparisons between Loon trajectories and those calculated by applying a trajectory model to reanalysis wind fields show that MERRA-2 wind fields result in the most accurate simulated trajectories with a mean 5-day balloon–reanalysis trajectory separation of 621 km and median separation of 324 km showing significant improvements over MERRA version 1 and slightly outperforming ERA-Interim. The latitudinal structure of the trajectory statistics for all reanalyses displays marginally lower mean separations between 15 and 35° S than between 35 and 55° S, despite standard deviations in the wind differences increasing toward the equator. This is shown to be related to the distance travelled by the balloon playing a role in the separation statistics.


2013 ◽  
Vol 6 (2) ◽  
pp. 779-809 ◽  
Author(s):  
B. Geyer

Abstract. The coastDat data sets were produced to give a consistent and homogeneous database mainly for assessing weather statistics and long-term changes for Europe, especially in data sparse regions. A sequence of numerical models was employed to reconstruct all aspects of marine climate (such as storms, waves, surges etc.) over many decades. Here, we describe the atmospheric part of coastDat2 (Geyer and Rockel, 2013, doi:10.1594/WDCC/coastDat-2_COSMO-CLM). It consists of a regional climate reconstruction for entire Europe, including Baltic and North Sea and parts of the Atlantic. The simulation was done for 1948 to 2012 with a regional climate model and a horizontal grid size of 0.22° in rotated coordinates. Global reanalysis data were used as forcing and spectral nudging was applied. To meet the demands on the coastDat data set about 70 variables are stored hourly.


2020 ◽  
Vol 20 (1) ◽  
pp. 345-374
Author(s):  
Masatomo Fujiwara ◽  
Patrick Martineau ◽  
Jonathon S. Wright

Abstract. The global response of air temperature at 2 m above the surface to the eruptions of Mount Agung in March 1963, El Chichón in April 1982, and Mount Pinatubo in June 1991 is investigated using 11 global atmospheric reanalysis data sets (JRA-55, JRA-25, MERRA-2, MERRA, ERA-Interim, ERA-40, CFSR, NCEP-NCAR R-1, 20CR version 2c, ERA-20C, and CERA-20C). Multiple linear regression (MLR) is applied to the monthly mean time series of temperature for two periods – 1980–2010 (for 10 reanalyses) and 1958–2001 (for 6 reanalyses) – by considering explanatory factors of seasonal harmonics, linear trends, quasi-biennial oscillation (QBO), solar cycle, tropical sea surface temperature (SST) variations in the Pacific, Indian, and Atlantic Oceans, and Arctic SST variations. Empirical orthogonal function (EOF) analysis is applied to these climatic indices to obtain a set of orthogonal indices to be used for the MLR. The residuals of the MLR are used to define the volcanic signals for the three eruptions separately. First, area-averaged time series of the residuals are investigated and compared with the results from previous studies. Then, the geographical distribution of the response during the peak cooling period after each eruption is investigated. In general, different reanalyses show similar geographical patterns of the response, but with the largest differences in the polar regions. The Pinatubo response shows the largest average cooling in the 60∘ N–60∘ S region among the three eruptions, with a peak cooling of 0.10–0.15 K. The El Chichón response shows slightly larger cooling in the NH than in the Southern Hemisphere (SH), while the Agung response shows larger cooling in the SH. These hemispheric differences are consistent with the distribution of stratospheric aerosol optical depth after these eruptions; however, the peak cooling after these two eruptions is comparable in magnitude to unexplained cooling events in other periods without volcanic influence. Other methods in which the MLR model is used with different sets of indices are also tested, and it is found that careful treatment of tropical SST variability is necessary to evaluate the surface response to volcanic eruptions in observations and reanalyses.


Sign in / Sign up

Export Citation Format

Share Document