scholarly journals The influence of mesoscale l and–sea breeze circulation on local wind climatology in the Svalbard fjords of Kongsfjorden and Hornsund

Author(s):  
Małgorzata Kitowska ◽  
Przemysław Makuch ◽  
Tomasz Petelski ◽  
Jacek Piskozub
1995 ◽  
Vol 51 (2) ◽  
pp. 175-177
Author(s):  
The Executive Committee of Sectiona

1995 ◽  
Vol 51 (3) ◽  
pp. 279-284
Author(s):  
The Executive Committee of Sectiona

1998 ◽  
Vol 16 (7) ◽  
pp. 866-871 ◽  
Author(s):  
S. H. Franchito ◽  
V. B. Rao ◽  
J. L. Stech ◽  
J. A. Lorenzzetti

Abstract. The effect of coastal upwelling on sea-breeze circulation in Cabo Frio (Brazil) and the feedback of sea-breeze on the upwelling signal in this region are investigated. In order to study the effect of coastal upwelling on sea-breeze a non-linear, three-dimensional, primitive equation atmospheric model is employed. The model considers only dry air and employs boundary layer formulation. The surface temperature is determined by a forcing function applied to the Earth's surface. In order to investigate the seasonal variations of the circulation, numerical experiments considering three-month means are conducted: January-February-March (JFM), April-May-June (AMJ), July-August-September (JAS) and October-November-December (OND). The model results show that the sea-breeze is most intense near the coast at all the seasons. The sea-breeze is stronger in OND and JFM, when the upwelling occurs, and weaker in AMJ and JAS, when there is no upwelling. Numerical simulations also show that when the upwelling occurs the sea-breeze develops and attains maximum intensity earlier than when it does not occur. Observations show a similar behavior. In order to verify the effect of the sea-breeze surface wind on the upwelling, a two-layer finite element ocean model is also implemented. The results of simulations using this model, forced by the wind generated in the sea-breeze model, show that the sea-breeze effectively enhances the upwelling signal.Key words. Meteorology and atmospheric dynamics (mesoscale meteorology; ocean-atmosphere interactions) · Oceanography (numerical modeling)


1995 ◽  
Vol 73 (3) ◽  
pp. 299-317 ◽  
Author(s):  
Klara Finkele ◽  
J�rg M. Hacker ◽  
Helmut Kraus ◽  
Roland A. D. Byron-Scott

2019 ◽  
Vol 58 (6) ◽  
pp. 1293-1307
Author(s):  
Junshi Ito ◽  
Toshiyuki Nagoshi ◽  
Hiroshi Niino

AbstractA renowned local wind in Japan, “Hijikawa-Arashi,” is a thermally driven nocturnal gap wind accompanied by fog. The wind is visually identified by the fog along the valley of the Hijikawa River between the Ozu basin and the Seto Inland Sea during the early morning in autumn and winter. A fine-resolution numerical model is employed to reproduce the main observed features of Hijikawa-Arashi. A vertical resolution of 10 m or less at the lowest level is required to express the nocturnal radiative cooling of the land that is required for fog formation in the basin, and fine horizontal resolution is necessary to express a realistic valley through which the fog is advected to the sea. Multiple hydraulic jumps accompanied by supercritical flow occur because of the complex topography. Both moisture transport by the sea breeze during the daytime and evaporation from the land surface are important for accumulating moisture to produce the fog.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 838 ◽  
Author(s):  
Christos Zerefos ◽  
Stavros Solomos ◽  
Dimitris Melas ◽  
John Kapsomenakis ◽  
Christos Repapis

The Battle of Salamis in 480 B.C. is one of the most important naval battles of all times. This work examines in detail the climatically prevailing weather conditions during the Persian invasion in Greece. We perform a climatological analysis of the wind regime in the narrow straits of Salamis, where this historic battle took place, based on available station measurements, reanalysis and modeling simulations (ERA5, WRF) spanning through the period of 1960–2019. Our results are compared to ancient sources before and during the course of the conflict and can be summarized as follows: (i) Our climatological station measurements and model runs describing the prevailing winds in the area of interest are consistent with the eyewitness descriptions reported by ancient historians and (ii) The ancient Greeks and particularly Themistocles must have been aware of the local wind climatology since their strategic plan was carefully designed and implemented to take advantage of the diurnal wind variation. The combination of northwest wind during the night and early morning, converging with a south sea breeze after 10:00 A.M., formed a “pincer” that aided the Greeks at the beginning of the clash in the morning, while it brought turmoil to the Persian fleet and prevented them to escape to the open sea in the early afternoon hours.


2019 ◽  
Vol 76 (10) ◽  
pp. 3247-3265
Author(s):  
Yu Du ◽  
Richard Rotunno ◽  
Fuqing Zhang

Abstract The impact of vertical wind shear on the land–sea-breeze circulation at the equator is explored using idealized 2D numerical simulations and a simple 2D linear analytical model. Both the idealized and linear analytical models indicate Doppler shifting and attenuation effects coexist under the effect of vertical wind shear for the propagation of gravity waves that characterize the land–sea-breeze circulation. Without a background wind, the idealized sea breeze has two ray paths of gravity waves that extend outward and upward from the coast. A uniform background wind causes a tilting of the two ray paths due to Doppler shifting. With vertical shear in the background wind, the downstream ray path of wave propagation can be rapidly attenuated near a certain level, whereas the upstream ray path is not attenuated and the amplitudes even increase with height. The downstream attenuation level is found to descend with increasing linear wind shear. The present analytical model establishes that the attenuation level corresponds to the critical level where the background wind is equal to the horizontal gravity wave phase speed. The upstream gravity wave ray path can propagate upward without attenuation as there is no critical level there.


2009 ◽  
Vol 17 (1) ◽  
pp. 19-31 ◽  
Author(s):  
Cristina Mangia ◽  
Ilenia Schipa ◽  
Annalisa Tanzarella ◽  
Dario Conte ◽  
Gian Paolo Marra ◽  
...  

2015 ◽  
Vol 54 (1) ◽  
pp. 77-93 ◽  
Author(s):  
Christopher P. Hughes ◽  
Dana E. Veron

AbstractWinds across the Delaware Peninsula transport pollutants, modify the temperature, and play a critical role within the state’s agricultural and tourism industries. The low-level winds inland and near Delaware’s coastline are characterized using observations from eight meteorological stations operated by the Delaware Environmental Observing System and the National Data Buoy Center from 2005 through 2012. The low-level winds have pronounced dominant directions during the summer (southwest/southeast) and winter (northwest) seasons, with the greatest spatial and temporal variability occurring in the summer. This inhomogeneity was further investigated with a set of simulations of the low-level winds over the Delaware Bay and surrounding landmass using the Weather Research and Forecasting Model for a subset of days from 2006 through 2012. The model was run with three nests, with the inner nest having a 2-km horizontal resolution. The randomly selected days were organized by synoptic type and season. Mesoscale wind events such as the sea-breeze circulation introduce significant variability in the local wind field of coastal Delaware—an effect that is seen in both observed and modeled data. Southerly winds off Delaware’s coast frequently shift counterclockwise up the Delaware Bay in alignment with the bay coastline. Long-term data from station B44009 (1984–2012) indicate a May decrease (0.03 m s−1 yr−1; significance p = 0.026) and an October increase (0.04 m s−1 yr−1; p = 0.006) of the mean wind speed. Results suggest that the local wind regime is multifaceted and contains significant seasonal, diurnal, and spatial variations.


2019 ◽  
Vol 76 (11) ◽  
pp. 3633-3654 ◽  
Author(s):  
Michael B. Natoli ◽  
Eric D. Maloney

Abstract Precipitation in the region surrounding the South China Sea over land and coastal waters exhibits a strong diurnal cycle associated with a land–sea temperature contrast that drives a sea-breeze circulation. The boreal summer intraseasonal oscillation (BSISO) is an important modulator of diurnal precipitation patterns, an understanding of which is a primary goal of the field campaign Propagation of Intraseasonal Tropical Oscillations (PISTON). Using 21 years of CMORPH precipitation for Luzon Island in the northern Philippines, it is shown that the diurnal cycle amplitude is generally maximized over land roughly 1 week before the arrival of the broader oceanic convective envelope associated with the BSISO. A strong diurnal cycle in coastal waters is observed in the transition from the inactive to active phase, associated with offshore propagation of the diurnal cycle. The diurnal cycle amplitude is in phase with daily mean precipitation over Mindanao but is nearly out of phase over Luzon. The BSISO influence on the diurnal cycle on the eastern side of topography is nearly opposite to that on the western side. Using wind, moisture, and radiation products from the ERA5 reanalysis, it is proposed that the enhanced diurnal cycle west of the mountains during BSISO suppressed phases is related to increased insolation and weaker prevailing onshore winds that promote a stronger sea-breeze circulation when compared with the May–October mean state. Offshore propagation is suppressed until ambient midlevel moisture increases over the surrounding oceans during the transition to the active BSISO phase. In BSISO enhanced phases, strong low-level winds and increased cloudiness suppress the sea-breeze circulation.


Sign in / Sign up

Export Citation Format

Share Document