The role of Tibetan summer low clouds in the simulation of the East Asian Summer Monsoon rain belt

Author(s):  
Zhun Guo ◽  
Tianjun Zhou ◽  
Minghuai Wang ◽  
Ben Yang ◽  
Bo Wu
2015 ◽  
Vol 28 (18) ◽  
pp. 7093-7107 ◽  
Author(s):  
Fengfei Song ◽  
Tianjun Zhou

Abstract This study investigates the role of internal variability in modulating the East Asian summer monsoon (EASM)–ENSO relationship using Twentieth-Century Reanalysis (20CR) data and simulations from phase 5 of CMIP (CMIP5). Analysis of 20CR data reveals an unstable EASM–ENSO relationship during the twentieth century. During the high-correlation periods of 1892–1912 and 1979–99, an evident western Pacific anticyclone (WPAC) and dipole sea level pressure (SLP) pattern are present in the decaying El Niño summer, accompanied by Indian Ocean warming and a tropospheric temperature Matsuno–Gill pattern. However, these are weaker or absent during low-correlation periods (1914–34 and 1958–78). After removing the external forcings based on historical simulations from 15 CMIP5 models, all the above features remain almost unchanged, suggesting the crucial role of internal variability. In a 501-yr preindustrial control (piControl) simulation without external forcing variation from CCSM4, the EASM–ENSO relationship also shows significant decadal variation, with a magnitude comparable to the 20CR data. The analysis demonstrates that the EASM–ENSO relationship’s variation is modulated by the interdecadal Pacific oscillation (IPO). Compared to negative IPO phases, the warmer East China Sea in positive IPO phases weakens the western North Pacific subtropical high (WNPSH), inducing more precipitation. Thus, the Kelvin wave–induced interannual divergence suppresses more mean-state precipitation and leads to a stronger WPAC. Hence, the IPO modulates the EASM–ENSO relationship through the WNPSH, which is evident in both 20CR and the piControl simulation.


2019 ◽  
Vol 3 (2) ◽  
pp. 147-156 ◽  
Author(s):  
Xian Chen ◽  
◽  
Zhong Zhong ◽  
YiJia Hu ◽  
Shi Zhong ◽  
...  

2020 ◽  
Author(s):  
Qiaoling Ren ◽  
Song Yang ◽  
Xinwen Jiang ◽  
Yang Zhang ◽  
Zhenning Li

<p>Previous studies have revealed that the Tibetan Plateau (TP) can weaken the high-frequency and low-frequency transient eddies (TE) transported along the westerly jet. Here the effects of TP on East Asian summer monsoon via weakened TE are investigated based on the simulations by the NCAR Community Earth System Model, in which a nudging method is used to amplify the TP’s inhibition of TE without changing the steady dynamic and thermodynamic effects of TP. Results reveal that the weakened TE by TP weaken the East Asian westerly jet (EAWJ) and shift the jet southward via transient vorticity flux. The southward EAWJ accompanied with reduced poleward transport of moisture by TE results in less rainfall in northern East Asia but more rainfall in southern East Asia, particularly in early summer when the EAWJ is stably located over the TP and the meridional gradient of water vapor is large. Furthermore, the anomalous precipitation can move the EAWJ further southward through the anomalous diabatic heating in early summer, forming a positive feedback. Therefore, the TP’s inhibition of TE can shift the East Asian rain belt southward, different from the TP’s steady forcing which favors a poleward shift of the rain belt. It is also demonstrated that the atmospheric internal variability can lead to the south-flood-north-drought pattern of summer rainfall change over East Asia, indicating the important role of TE in East Asian summer monsoon.</p>


2015 ◽  
Vol 112 (43) ◽  
pp. 13178-13183 ◽  
Author(s):  
Shiling Yang ◽  
Zhongli Ding ◽  
Yangyang Li ◽  
Xu Wang ◽  
Wenying Jiang ◽  
...  

Glacial–interglacial changes in the distribution of C3/C4 vegetation on the Chinese Loess Plateau have been related to East Asian summer monsoon intensity and position, and could provide insights into future changes caused by global warming. Here, we present δ13C records of bulk organic matter since the Last Glacial Maximum (LGM) from 21 loess sections across the Loess Plateau. The δ13C values (range: –25‰ to –16‰) increased gradually both from the LGM to the mid-Holocene in each section and from northwest to southeast in each time interval. During the LGM, C4 biomass increased from <5% in the northwest to 10–20% in the southeast, while during the mid-Holocene C4 vegetation increased throughout the Plateau, with estimated biomass increasing from 10% to 20% in the northwest to >40% in the southeast. The spatial pattern of C4 biomass in both the LGM and the mid-Holocene closely resembles that of modern warm-season precipitation, and thus can serve as a robust analog for the contemporary East Asian summer monsoon rain belt. Using the 10–20% isolines for C4 biomass in the cold LGM as a reference, we derived a minimum 300-km northwestward migration of the monsoon rain belt for the warm Holocene. Our results strongly support the prediction that Earth's thermal equator will move northward in a warmer world. The southward displacement of the monsoon rain belt and the drying trend observed during the last few decades in northern China will soon reverse as global warming continues.


Sign in / Sign up

Export Citation Format

Share Document