scholarly journals Synoptic circulation changes over Central Europe from 1900 to 2100 – Reanalyses and CMIP6

Author(s):  
Pedro Herrera‐Lormendez ◽  
Nikolaos Mastrantonas ◽  
Hervé Douville ◽  
Andreas Hoy ◽  
Jörg Matschullat
2005 ◽  
Vol 5 (4) ◽  
pp. 7415-7455 ◽  
Author(s):  
A. P. van Ulden ◽  
G. J. van Oldenborgh

Abstract. The credibility of regional climate change predictions for the 21st century depends on the ability of climate models to simulate global and regional circulations in a realistic manner. To investigate this issue, a large set of global coupled climate model experiments prepared for the Fourth Assessment Report of the Intergovernmental Panel on Climate Change has been studied. First we compared 20th century model simulations of longterm mean monthly sea level pressure patterns with ERA-40. We found a wide range in performance. Many models performed well on a global scale. For northern midlatitudes and Europe many models showed large errors, while other models simulated realistic pressure fields. Next we focused on the monthly mean climate of West-Central Europe in the 20th century. In this region the climate depends strongly on the circulation. Westerlies bring temperate weather from the Atlantic Ocean, while easterlies bring cold spells in winter and hot weather in summer. In order to be credible for this region, a climate model has to show realistic circulation statistics in the current climate, and a response of temperature and precipitation variations to circulation variations that agrees with observations. We found that even models with a realistic mean pressure pattern over Europe still showed pronounced deviations from the observed circulation distributions. In particular, the frequency distributions of the strength of westerlies appears to be difficult to simulate well. This contributes substantially to biases in simulated temperatures and precipitation, which have to be accounted for when comparing model simulations with observations. Finally we considered changes in climate simulations between the end of the 20th century and the end of the 21st century. Here we found that changes in simulated circulation statistics play an important role in climate scenarios. For temperature, the warm extremes in summer and cold extremes in winter are most sensitive to changes in circulation, because these extremes depend strongly on the simulated frequency of eastery flow. For precipitation, we found that circulation changes have a substantial influence, both on mean changes and on changes in the probability of wet extremes and of long dry spells. Because we do not know how reliable climate models are in their predictions of circulation changes, climate change predictions for Europe are as yet uncertain in many aspects.


2006 ◽  
Vol 6 (4) ◽  
pp. 863-881 ◽  
Author(s):  
A. P. van Ulden ◽  
G. J. van Oldenborgh

Abstract. The quality of global sea level pressure patterns has been assessed for simulations by 23 coupled climate models. Most models showed high pattern correlations. With respect to the explained spatial variance, many models showed serious large-scale deficiencies, especially at mid-latitudes. Five models performed well at all latitudes and for each month of the year. Three models had a reasonable skill. We selected the five models with the best pressure patterns for a more detailed assessment of their simulations of the climate in Central Europe. We analysed observations and simulations of monthly mean geostrophic flow indices and of monthly mean temperature and precipitation. We used three geostrophic flow indices: the west component and south component of the geostrophic wind at the surface and the geostrophic vorticity. We found that circulation biases were important, and affected precipitation in particular. Apart from these circulation biases, the models showed other biases in temperature and precipitation, which were for some models larger than the circulation induced biases. For the 21st century the five models simulated quite different changes in circulation, precipitation and temperature. Precipitation changes appear to be primarily caused by circulation changes. Since the models show widely different circulation changes, especially in late summer, precipitation changes vary widely between the models as well. Some models simulate severe drying in late summer, while one model simulates significant precipitation increases in late summer. With respect to the mean temperature the circulation changes were important, but not dominant. However, changes in the distribution of monthly mean temperatures, do show large indirect influences of circulation changes. Especially in late summer, two models simulate very strong warming of warm months, which can be attributed to severe summer drying in the simulations by these models. The models differ also significantly in the simulated warming of cold winter months. Finally, the models simulate rather different changes in North Atlantic sea surface temperature, which is likely to impact on changes in temperature and precipitation. These results imply that several important aspects of climate change in Central Europe are highly uncertain. Other aspects of the simulated climate change appear to be more robust. All models simulate significant warming all year round and an increase in precipitation in the winter half-year.


2015 ◽  
Vol 19 (7) ◽  
pp. 3093-3107 ◽  
Author(s):  
A. K. Fleig ◽  
L. M. Tallaksen ◽  
P. James ◽  
H. Hisdal ◽  
K. Stahl

Abstract. Surface climate in Europe is changing and patterns in trends have been found to vary at sub-seasonal scales. This study aims to contribute to a better understanding of these changes across space and time by analysing to what degree observed climatic trends can be attributed to changes in synoptic atmospheric circulation. The relative importance of synoptic circulation changes (i.e. trends in synoptic type frequencies) as opposed to trends in the hydrothermal properties of synoptic types (within-type trends) on precipitation and temperature trends in Europe is assessed on a monthly basis. The study is based on mapping spatial and temporal trend patterns and their variability at a relatively high resolution (0.5° × 0.5°; monthly) across Europe. Gridded precipitation and temperature data (1963–2001) originate from the Watch Forcing Data set and synoptic types are defined by the objective SynopVis Grosswetterlagen (SVG). During the study period, relatively high influence of synoptic circulation changes are found from January to March, contributing to wetting trends in northern Europe and drying in the south. Simultaneously, particularly dry synoptic types get warmer first in south-western Europe in November and/or December and affect most of Europe in March and/or April. Strong influence of synoptic circulation changes is again found in June and August. In general, changes in synoptic circulation has a stronger effect on climate trends in north-western Europe than in the south-east. The exact locations of the strongest influence of synoptic circulation changes vary with the time of year and to some degree between precipitation and temperature. Throughout the year and across the whole of Europe, precipitation and temperature trends are caused by a combination of synoptic circulation changes and within-type changes with their relative influence varying between regions, months and climate variables.


Sign in / Sign up

Export Citation Format

Share Document