scholarly journals In Vitro‐Induced High Sugar Environments Deteriorate Human Cortical Bone Elastic Modulus and Fracture Toughness

2019 ◽  
Vol 38 (5) ◽  
pp. 972-983 ◽  
Author(s):  
Kelly Merlo ◽  
Jacob Aaronson ◽  
Rachana Vaidya ◽  
Taraneh Rezaee ◽  
Vijaya Chalivendra ◽  
...  
2011 ◽  
Vol 30 (5) ◽  
pp. 693-699 ◽  
Author(s):  
Ziheng Wu ◽  
Timothy C. Ovaert ◽  
Glen L. Niebur

2021 ◽  
Vol 2070 (1) ◽  
pp. 012224
Author(s):  
N Ganesh ◽  
S Rambabu

Abstract In this article, design and finite element simulation of porous Ti-6Al-4V alloy structures was presented. Typically, titanium and titanium alloy implants can be manufactured with required pore size and porosity volume by using powder bed fusion techniques due to advancement in additive manufacturing technologies. However, the mismatch of elastic modulus between human cortical bone and the dense Ti-6Al-4V alloy implant resulted in stress shielding which accelerate the implant failure. The porous implant structures help in reduce the mismatch of elastic modulus between the cortical bone and implant structure and also improve the bone ingrowth. Hence, the present work focuses on design of Ti-6Al-4V alloy porous structures with various porosities ranging from 10% to 70% and simulated to determine the elastic modulus suitable for human cortical bone. The sample with 45% porosity is found to be best suited for replacement of cortical bone with elastic modulus of 74Gpa, preventing stress shielding effect and enhanced chances of bone ingrowth.


2018 ◽  
Vol 7 (1) ◽  
pp. 105-110 ◽  
Author(s):  
O. Abar ◽  
S. Dharmar ◽  
S. Y. Tang

Objectives Advanced glycation end-products (AGEs) are a post-translational modification of collagen that form spontaneously in the skeletal matrix due to the presence of reducing sugars, such as glucose. The accumulation of AGEs leads to collagen cross-linking, which adversely affects bone quality and has been shown to play a major role in fracture risk. Thus, intervening in the formation and accumulation of AGEs may be a viable means of protecting bone quality. Methods An in vitro model was used to examine the efficacy of two AGE-inhibitors, aminoguanidine (AG) and pyridoxamine (PM), on ageing human cortical bone. Mid-diaphyseal tibial cortical bone segments were obtained from female cadavers (n = 20, age range: 57 years to 97 years) and randomly subjected to one of four treatments: control; glucose only; glucose and AG; or glucose and PM. Following treatment, each specimen underwent mechanical testing under physiological conditions via reference point indentation, and AGEs were quantified by fluorescence. Results Treatment with AG and PM showed a significant decrease in AGE content versus control groups, as well as a significant decrease in the change in indentation distance, a reliable parameter for analyzing bone strength, via two-way analysis of variance (ANOVA) (p < 0.05). Conclusions The data suggest that AG and PM prevent AGE formation and subsequent biomechanical degradation in vitro. Modulation of AGEs may help to identify novel therapeutic targets to mitigate bone quality deterioration, especially deterioration due to ageing and in AGE-susceptible populations (e.g. diabetics). Cite this article: O. Abar, S. Dharmar, S. Y. Tang. The effect of aminoguanidine (AG) and pyridoxamine (PM) on ageing human cortical bone. Bone Joint Res 2018;7:105–110. DOI: 10.1302/2046-3758.71.BJR-2017-0135.R1.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mustafa Unal ◽  
Sasidhar Uppuganti ◽  
Selin Timur ◽  
Anita Mahadevan-Jansen ◽  
Ozan Akkus ◽  
...  

2012 ◽  
Vol 28 ◽  
pp. e39
Author(s):  
L.V.S. Pabis ◽  
R.G. Lima ◽  
A. Muench ◽  
J.B.C. Meira ◽  
V.E. Arana-Chavez ◽  
...  

1998 ◽  
Vol 36 (1) ◽  
pp. 51-56 ◽  
Author(s):  
K. D. Hunt ◽  
V. Dean O'Loughlin ◽  
D. W. Fitting ◽  
L. Adler

2016 ◽  
Vol 49 (13) ◽  
pp. 2748-2755 ◽  
Author(s):  
Mathilde Granke ◽  
Alexander J. Makowski ◽  
Sasidhar Uppuganti ◽  
Jeffry S. Nyman

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1507
Author(s):  
Pedro Akira Bazaglia Kuroda ◽  
Barbara Letícia Tomaz Pedroso ◽  
Fenelon Martinho Lima Pontes ◽  
Carlos Roberto Grandini

Ti alloys are the most used metallic materials in the biomedical field due to their excellent biocompatibility associated with good corrosion resistance in body fluids and relatively low elastic modulus. However, the alloys used in the orthopedic area have an elastic modulus that is 2 to 4 times higher than that of human cortical bone. Searching for new alloys for biomedical applications and with low elastic modulus, zirconium gained prominence due to its attractive properties, especially its biocompatibility. The purpose of this paper is to present novel as-cast alloys of the Zr-25Ta-xTi system and analyze the influence of titanium on the structure, microstructure, microhardness, and elastic modulus of the alloys. The alloys were prepared using an arc-melting furnace. X-ray diffraction measurements and microscopy techniques were used to characterize the crystalline structure and microstructure. From structural and microstructural characterizations, it was observed that titanium acted as an α-stabilizing element since its increase in the precipitation of the orthorhombic α” phase, an intermediate phase from β to α phases, in the alloys. Regarding microhardness measurements, the alloys have higher hardness than pure zirconium due to solid solution hardening that detaches the Zr-25Ta alloy, which has a high hardness value of the precipitation of the ω phase. Among the studied alloys, the Zr-25Ta-25Ti alloy is highlighted, demonstrating the lowest result of modulus of elasticity, which is approximately 2 times higher than the human cortical bone, but many alloys used in the biomedical field, such as pure titanium, have elastic modulus values almost 3 times higher than that of human bone.


Sign in / Sign up

Export Citation Format

Share Document