Long term crop management effects on soil organic carbon, structure, and water retention in a cropland soil in central Ohio, USA

2020 ◽  
Vol 183 (2) ◽  
pp. 200-207
Author(s):  
Surender Singh Yadav ◽  
Jose G. Guzman ◽  
Ram Swaroop Meena ◽  
Rattan Lal ◽  
Gulab Singh Yadav
2010 ◽  
Vol 102 (3) ◽  
pp. 990-997 ◽  
Author(s):  
Joseph G. Benjamin ◽  
Ardell D. Halvorson ◽  
David Christopher Nielsen ◽  
Maysoon M. Mikha

Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1362
Author(s):  
Ioanna S. Panagea ◽  
Antonio Berti ◽  
Pavel Čermak ◽  
Jan Diels ◽  
Annemie Elsen ◽  
...  

Soil water retention (SWR) is an important soil property related to soil structure, texture, and organic matter (SOM), among other properties. Agricultural management practices affect some of these properties in an interdependent way. In this study, the impact of management-induced changes of soil organic carbon (SOC) on SWR is evaluated in five long-term experiments in Europe (running from 8 up to 54 years when samples were taken). Topsoil samples (0–15 cm) were collected and analysed to evaluate the effects of three different management categories, i.e., soil tillage, the addition of exogenous organic materials, the incorporation of crop residues affecting SOC and water content under a range of matric potentials. Changes in the total SOC up to 10 g C kg−1 soil (1%) observed for the different management practices, do not cause statistically significant differences in the SWR characteristics as expected. The direct impact of the SOC on SWR is consistent but negligible, whereas the indirect impact of SOC in the higher matric potentials, which are mainly affected by soil structure and aggregate composition, prevails. The different water content responses under the various matric potentials to SOC changes for each management group implies that one conservation measure alone has a limited effect on SWR and only a combination of several practices that lead to better soil structure, such as reduced soil disturbances combined with increased SOM inputs can lead to better water holding capacity of the soil.


Soil Research ◽  
2006 ◽  
Vol 44 (5) ◽  
pp. 487 ◽  
Author(s):  
K. M. Hati ◽  
A. Swarup ◽  
D. Singh ◽  
A. K. Misra ◽  
P. K. Ghosh

Effects of continuous cropping, fertilisation, and manuring on soil organic carbon content and physical properties such as particle size distribution, bulk density, aggregation, porosity, and water retention characteristics of a Typic Ustochrept were examined after 31 cycles of maize–wheat–cowpea (fodder) crop rotation. Five contrasting nutrient treatments from a long-term fertiliser experiment were chosen for this study: control (no fertiliser or manure); 100% (optimum dose) nitrogen (N) fertiliser; 100% nitrogen and phosphorus (NP); 100% nitrogen, phosphorus, and potassium (NPK); 100% NPK + farmyard manure (NPK+FYM). The NPK+FYM treatment significantly improved soil organic carbon (SOC) content in 0–0.15 m soil compared with the other 4 treatments; the NPK treatment resulted in significantly more SOC than the control and N treatments (P < 0.05). The SOC in NPK and NPK+FYM treatments was 38.6 and 63.6%, respectively, more than the initial level of SOC (4.4 g/kg) after 31 cycles of cropping. The control and N treatments maintained the SOC status of the soil at the initial value. NPK+FYM significantly improved soil aggregation, soil water retention, microporosity, and available water capacity and reduced bulk density of the soil at 0–0.30 m depth. Greater crop growth under the NPK treatment resulted in increased organic matter content of soil, which improved aggregate stability, water retention capacity, and microporosity compared with the control. The effects were more conspicuous with the NPK+FYM treatment and at the surface soil (0–0.15 m). Application of imbalanced inorganic fertiliser (N and NP treatments) did not have a deleterious effect on the physical properties of the soil compared with the control. SOC content showed a highly significant and positive correlation with mean weight diameter (0.60), % water-stable macro-aggregates (0.61), and soil water retention at –0.033 MPa (0.75) and –1.5 MPa (0.72), and negative correlation with bulk density (–0.70) for the surface 0–0.15 m soil. The study thus suggests that application of balanced mineral fertilisers in combination with organic manure sustains a better soil physical environment and higher crop productivity under intensive cultivation.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1036
Author(s):  
Sauro Simoni ◽  
Giovanni Caruso ◽  
Nadia Vignozzi ◽  
Riccardo Gucci ◽  
Giuseppe Valboa ◽  
...  

Edaphic arthropod communities provide valuable information about the prevailing status of soil quality to improve the functionality and long-term sustainability of soil management. The study aimed at evaluating the effect of plant and grass cover on the functional biodiversity and soil characteristics in a mature olive orchard (Olea europaea L.) managed for ten years by two conservation soil managements: natural grass cover (NC) and conservation tillage (CT). The trees under CT grew and yielded more than those under NC during the period of increasing yields (years 4–7) but not when they reached full production. Soil management did not affect the tree root density. Collecting samples underneath the canopy (UC) and in the inter-row space (IR), the edaphic environment was characterized by soil structure, hydrological properties, the concentration and storage of soil organic carbon pools and the distribution of microarthropod communities. The soil organic carbon pools (total and humified) were negatively affected by minimum tillage in IR, but not UC, without a loss in fruit and oil yield. The assemblages of microarthropods benefited, firstly, from the grass cover, secondly, from the canopy effect, and thirdly, from a soil structure ensuring a high air capacity and water storage. Feeding functional groups—hemiedaphic macrosaprophages, polyphages and predators—resulted in selecting the ecotonal microenvironment between the surface and edaphic habitat.


2021 ◽  
Vol 772 ◽  
pp. 145037
Author(s):  
Dan Wan ◽  
Mingkai Ma ◽  
Na Peng ◽  
Xuesong Luo ◽  
Wenli Chen ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 650
Author(s):  
Jesús Aguilera-Huertas ◽  
Beatriz Lozano-García ◽  
Manuel González-Rosado ◽  
Luis Parras-Alcántara

The short- and medium—long-term effects of management and hillside position on soil organic carbon (SOC) changes were studied in a centenary Mediterranean rainfed olive grove. One way to measure these changes is to analyze the soil quality, as it assesses soil degradation degree and attempts to identify management practices for sustainable soil use. In this context, the SOC stratification index (SR-COS) is one of the best indicators of soil quality to assess the degradation degree from SOC content without analyzing other soil properties. The SR-SOC was calculated in soil profiles (horizon-by-horizon) to identify the best soil management practices for sustainable use. The following time periods and soil management combinations were tested: (i) in the medium‒long-term (17 years) from conventional tillage (CT) to no-tillage (NT), (ii) in the short-term (2 years) from CT to no-tillage with cover crops (NT-CC), and (iii) the effect in the short-term (from CT to NT-CC) of different topographic positions along a hillside. The results indicate that the SR-SOC increased with depth for all management practices. The SR-SOC ranged from 1.21 to 1.73 in CT0, from 1.48 to 3.01 in CT1, from 1.15 to 2.48 in CT2, from 1.22 to 2.39 in NT-CC and from 0.98 to 4.16 in NT; therefore, the soil quality from the SR-SOC index was not directly linked to the increase or loss of SOC along the soil profile. This demonstrates the time-variability of SR-SOC and that NT improves soil quality in the long-term.


CATENA ◽  
2017 ◽  
Vol 151 ◽  
pp. 63-73 ◽  
Author(s):  
Samuel Bouchoms ◽  
Zhengang Wang ◽  
Veerle Vanacker ◽  
Sebastian Doetterl ◽  
Kristof Van Oost

2011 ◽  
Vol 25 (2) ◽  
pp. 173-183 ◽  
Author(s):  
CH. Srinivasarao ◽  
B. Venkateswarlu ◽  
R. Lal ◽  
A. K. Singh ◽  
S. Kundu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document