Determination of Sulfadiazine and N4-Acetylsulfadiazine in Biological Fluids by Liquid Chromatography on Silica Gel with an Aqueous Buffer as Mobile Phase

1982 ◽  
Vol 71 (10) ◽  
pp. 1142-1145 ◽  
Author(s):  
Douglas Westerlund ◽  
Agneta Wijkström
2020 ◽  
Vol 17 (1) ◽  
pp. 31-39
Author(s):  
Marilene Lopes Ângelo ◽  
Fernanda de Lima Moreira ◽  
Ana Laura Araújo Santos ◽  
Hérida Regina Nunes Salgado ◽  
Magali Benjamim de Araújo

Background:: Tibolone is a synthetic steroid commercialized by Organon under the brand name Livial (Org OD14), which is used in hormone therapy for menopause management and treatment of postmenopausal osteoporosis. Tibolone is defined as a selective tissue estrogenic activity regulator (STEAR) demonstrating tissue-specific effects on several organs such as brain, breast, urogenital tract, endometrium, bone and cardiovascular system. Aims:: This work aims to (1) present an overview of important published literature on existing methods for the analysis of tibolone and/or its metabolites in pharmaceutical formulations and biological fluids and (2) to conduct a critical comparison of the analytical methods used in doping control, pharmacokinetics and pharmaceutical formulations analysis of tibolone and its metabolites. Results and conclusions: : The major analytical method described for the analysis of tibolone in pharmaceutical formulations is High Pressure Liquid Chromatography (HPLC) coupled with ultraviolet (UV) detection, while Liquid Chromatography (LC) or Gas Chromatography (GC) used in combination with Mass Spectrometry (MS) or tandem mass spectrometry (MS/MS) is employed for the analysis of tibolone and/or its metabolites in biological fluids.


1994 ◽  
Vol 59 (3) ◽  
pp. 569-574 ◽  
Author(s):  
Josef Královský ◽  
Marta Kalhousová ◽  
Petr Šlosar

The reversed-phase high-performance liquid chromatography of some selected, industrially important aromatic sulfones has been investigated. The chromatographic behaviour of three groups of aromatic sulfones has been studied. The optimum conditions of separation and UV spectra of the sulfones and some of their hydroxy and benzyloxy derivatives are presented. The dependences of capacity factors vs methanol content in mobile phase are mentioned. The results obtained have been applied to the quantitative analysis of different technical-grade samples and isomer mixtures. For all the separation methods mentioned the concentration ranges of linear calibration curves have been determined.


2021 ◽  
Vol 66 (3) ◽  
pp. 172-176
Author(s):  
Lyubov Borisovna Kalikova ◽  
E. R. Boyko

Adenine nucleotides (ATP, ADP and AMP) play a central role in the regulation of metabolism and energy: they provide the energy balance of the cell, determine its redox state, act as allosteric effectors of a number of enzymes, modulate signaling and transcription factors and activate oxidation or biosynthesis substrates. A large number of methods have been developed to determine the level of ATP, ADP and AMP, but the most universal and effective method for the separation and analysis of complex mixtures is the reversed-phase high-performance liquid chromatography method (RP-HPLC). The aim of this study is to determine the optimal conditions for the qualitative separation and quantitative determination of standard solutions of ATP (1 mmol/l), ADP (0,5 mmol/l) and AMP (0,1 mmol/l) by RP-HPLC. The degree of separation of adenine nucleotides was estimated by the time of peak output in the chromatogram. To achieve the goal, the following tasks were set: assess the effect of the temperature of the analysis on the separation and change of the release time of the analytes in the chromatogram; determine the most optimal composition of the mobile phase for the separation of ATP, ADP and AMP in the chromatogram (the content of the organic solvent in the solution); to identify the effect of pH of the mobile phase on the separation of standard solutions of adenine nucleotides; set the optimal molarity of the mobile phase for the separation of ATP, ADP and AMP in the chromatogram. It was found that the temperature of the analysis does not affect the quality of peak separation, while the composition and pH of the mobile phase have a significant effect on the complete and clear separation of the studied nucleotides in the chromatogram. It was determined that the analysis temperature of 37°C and the mobile phase of 0.05 M KH2PO4 (pH 6.0) are optimal for separating the peaks of adenine nucleotides.


Sign in / Sign up

Export Citation Format

Share Document