scholarly journals Effects of planting Melia azedarach L . on soil properties and microbial community in saline‐alkali soil

Author(s):  
Na Li ◽  
Tianyun Shao ◽  
Yujie Zhou ◽  
Yuchen Cao ◽  
Huiying Hu ◽  
...  
Author(s):  
Na Li ◽  
Tianyun Shao ◽  
Yujie Zhou ◽  
Huiying Hui ◽  
Xiumei Gao ◽  
...  

Saline-alkali soils are widely distributed in China, affecting plant growth and sustainable development of ecosystems. This study characterized the effects of planting Melia azedarach L. on chemical properties and microbial communities in saline-alkali soils [bare (CK), bulk (BS) and rhizosphere soil (RS)]. Compared with the bare soil, planting Melia azedarach L. lowered salt content and concentrations of extractable Na, K, Ca, Mg and Cl-, but significantly increased organic matter, total nitrogen, total phosphorus, available phosphorus, soil urease activity and alkaline phosphatase activity in the rhizosphere soil. High-throughput sequencing results indicated that bacterial richness and diversity decreased in the order RS>BS>CK. The richness of fungi was ranked RS>CK>BS, and their diversity decreased in the order CK>RS>BS. The three dominant bacterial phyla were Proteobacteria, Actinobacteria and Bacteroidetes, and the three dominant fungal phyla were Ascomycota, Basidiomycota and Glomeromycota. Redundancy analysis indicated that total phosphorus concentration and alkaline phosphatase activity significantly influenced bacterial diversity, whereas soil Ca and Mg concentrations were closely related to the fungal community diversity. In conclusion, planting Melia azedarach L. improved soil properties, increased the diversity and richness of soil microbial communities, and thus ameliorated the saline-alkali soil.


2018 ◽  
Vol 117 ◽  
pp. 164-174 ◽  
Author(s):  
Maaike van Agtmaal ◽  
Angela L. Straathof ◽  
Aad Termorshuizen ◽  
Bart Lievens ◽  
Ellis Hoffland ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hongmei Yan ◽  
Fan Yang ◽  
Jiamin Gao ◽  
Ziheng Peng ◽  
Weimin Chen

AbstractAnthropogenic disturbance, such as agricultural and architectural activities, can greatly influence belowground soil microbes, and thus soil formation and nutrient cycling. The objective of this study was to investigate microbial community variation in deep soils affected by strong disturbances. In present study, twelve soil samples were collected from different depths (0–300 cm) and placed onto the surface. We investigated the structure variation of the microbial community down through the soil profiles in response to disturbance originated by legume plants (robinia and clover) cultivation vs. plant-free controls. The high-throughput sequencing of 16S rRNA genes showed that microbial α-diversity decreased with depth, and that growing both plants significantly impacted the diversity in the topsoil. The soil profile was clustered into three layers: I (0–40 cm), II (40–120 cm), and III (120–300 cm); with significantly different taxa found among them. Soil properties explained a large amount of the variation (23.5%) in the microbial community, and distinct factors affected microbial assembly in the different layers, e.g., available potassium in layer I, pH and total nitrogen in layer II, pH and organic matter in layer III. The prediction of metabolic functions and oxygen requirements indicated that the number of aerobic bacteria increased with more air exposure, which may further accelerate the transformation of nitrogen, sulfur, carbon, and pesticides in the soil. The diversity of soil microorganisms followed a depth-decay pattern, but became higher following legume growth and air exposure, with notable abundance variation of several important bacterial species, mainly belonging to Nitrospira, Verrucomicrobia, and Planctomycetes, and soil properties occurring across the soil profiles.


2019 ◽  
Vol 362 ◽  
pp. 187-195 ◽  
Author(s):  
Bo Jiang ◽  
Adedoyin Adebayo ◽  
Jianli Jia ◽  
Yi Xing ◽  
Songqiang Deng ◽  
...  

2020 ◽  
Vol 12 (12) ◽  
pp. 4868
Author(s):  
Kun Li ◽  
Guangcai Yin ◽  
Qiuyuan Xu ◽  
Junhua Yan ◽  
Zeng-Yei Hseu ◽  
...  

Biochar is a promising addition for cadmium-contaminated soil in-situ remediation, but its surface properties change after aging, cadmium adsorption is not well-documented, and subsequent environmental effects are still unknown. In this study, wood-derived (Eucalyptus saligna Sm.) biochar was pre-treated to simulate aging and the cadmium sorption process. We then analyzed the resulting physicochemical characteristics. We conducted comparative incubation studies on three age stages of biochar under cadmium adsorption or no cadmium adsorption and then measured soil properties and microbial communities after incubation. Biochar addition raised soil organic carbon (SOC), and aging significantly increased C/N ratios. Aged biochar promoted higher microbial abundance. Aged biochar treatments possessed different microflora with more gram-positive bacteria, significantly altering gram-positive/gram-negative bacteria ratios. Aging significantly increased the oxygen-containing functional groups (OCFGs) and surface area (SA) of biochar. Thus, aged biochar adsorbed more cadmium. Cadmium-binding biochar increased the proportion of gram-negative bacteria and decreased the proportions of gram-positive bacteria and fungi. Similar patterns in phospholipid fatty acids (PLFAs) across adsorption treatments indicated that changes in microbial communities due to the effects of cadmium were confined. The results reveal that biochar aging altered microbial community structure and function more than cadmium binding.


Sign in / Sign up

Export Citation Format

Share Document