A study of the effects of land use changes on soil physical properties and organic matter

2010 ◽  
Vol 21 (5) ◽  
pp. 496-502 ◽  
Author(s):  
F. Haghighi ◽  
M. Gorji ◽  
M. Shorafa
2013 ◽  
Vol 24 (5) ◽  
pp. 898-909 ◽  
Author(s):  
Š. Janeček ◽  
F. de Bello ◽  
J. Horník ◽  
M. Bartoš ◽  
T. Černý ◽  
...  

Author(s):  
Kelsey Watts

Soils play a critical role to society as a medium that facilitates crop production and also contributes to the energy and carbon balance of the Earth System. Land-use change and improper land-use is one of the dominant factors affecting soil erosion and nutrient loss in soils. We examined the effects of land-use change on an Elmbrook clay/clay-loam soil on a farm in Ameliasburg on the northern part of Prince Edward County. Three cover types were examined: a sod field (established for over 10 years), a wheat field (part of a wheat/corn/soybean rotation for 30 years) and an undisturbed deciduous forest. Under each land-use type, cores to a depth of 40 cm were collected along three random 30 m transects (at 8, 16 and 24 m), then divided them into 10 cm increments, combining all similar depth increments along one transect. Soil quality was assessed by analyzing various soil physical and chemical properties. Bulk density of the soil was much higher (1.55 vs. 0.95 g/cm3) in both agricultural ecosystems compared to the forest, but only in the 0-10 cm layer. Soil moisture at 60% water holding capacity was much greater for the forest than the sod and wheat soils. Soil pH was slightly lower in the forest compared to the sod and wheat fields. The sod and wheat fields showed losses of ~52% and ~53% organic matter, respectively, in contrast to the forested area. The greatest differences in organic matter and total carbon were found in the top 10 cm, likely due to the greater accumulation of litter at the ground surface in the forest compared to the agricultural sites. It appears that long-term (10 year) agricultural production has led to a decline in some, but not all, soil quality measures, particularly soil organic matter, bulk density and water holding capacity. These findings are consistent with much of the literature concerning the effects of land-use change on soil quality, and highlight the need to develop improved management systems to minimize losses in soil quality that can lead to declines in the productivity potential of soils over time.


2015 ◽  
Vol 7 (1) ◽  
pp. 1007-1024
Author(s):  
B. Turgut

Abstract. The aim of this study was to compare the soils of the wheat cultivation area (WCA) and the safflower cultivation area (SCA) within semi-arid climate zones in terms of their total carbon, nitrogen, sulphur contents, particle size distribution, aggregate stability, organic matter content, and pH values. This study presents the results from the analyses of 140 soil samples taken at two soil layers (0–10 and 10–20 cm) in the cultivation areas. At the end of the study, it has been established that there were significant differences between the cultivation areas in terms of soil physical properties such as total carbon (TC), total nitrogen (TN), total sulphur (TS) contents and pH, while only the TN content resulted in significantly different between the two soil layers. Moreover significant differences were identified in the cultivation areas in terms of soil physical properties including clay and sand contents, aggregate stability and organic matter content, whereas the only significant difference found among the soil layers was that of their silt content. Since safflower contains higher amounts of biomass than wheat, we found higher amounts of organic matter content and, therefore, higher amounts of TN and TS content in the soils of the SCA. In addition, due to the fact that wheat contains more cellulose – which takes longer to decompose – the TC content of the soil in the WCA were found to be higher than that of the SCA. The results also revealed that the WCA had a higher carbon storage capacity.


2016 ◽  
Vol 25 (1) ◽  
pp. 385-394 ◽  
Author(s):  
Bingbing Xu ◽  
Qinghui Huang ◽  
Jianhua Li ◽  
Penghui Li ◽  
Yuanjing Xiang ◽  
...  

2015 ◽  
Vol 7 (1) ◽  
pp. 115-145 ◽  
Author(s):  
Y. Mohawesh ◽  
A. Taimeh ◽  
F. Ziadat

Abstract. Land degradation resulting from improper land use and management is a major cause of declined productivity in the arid environment. The objectives of this study were to examine the effects of a sequence of land use changes, soil conservation measures, and the time since their implementation on the degradation of selected soil properties. The climate for the selected 105 km2 watershed varies from semi-arid sub-tropical to Mediterranean sub-humid. Land use changes were detected using aerial photographs acquired in 1953, 1978, and 2008. A total of 218 samples were collected from 40 sites in three different rainfall zones to represent different land use changes and different lengths of time since the construction of stone walls. Analyses of variance were used to test the differences between the sequences of land use changes (interchangeable sequences of forest, orchards, field crops, and range), the time since the implementation of soil conservation measures, and rainfall on the thickness of the A-horizon, soil organic carbon content, and texture. Soil organic carbon reacts actively with different combinations and sequences of land use changes. The time since stone walls were constructed showed significant impacts on soil organic carbon and the thickness of the surface horizon. The effects of changing the land use and whether the changes were associated with the construction of stone walls, varied according to the annual rainfall. The results help in understanding the effects of land use changes on land degradation processes and carbon sequestration potential and in formulating sound soil conservation plans.


2010 ◽  
Vol 143 (11) ◽  
pp. 2770-2778 ◽  
Author(s):  
Mattia Brambilla ◽  
Fabio Casale ◽  
Valentina Bergero ◽  
Giuseppe Bogliani ◽  
G. Matteo Crovetto ◽  
...  

2015 ◽  
Vol 38 (4) ◽  
pp. 295-301
Author(s):  
Poonam ◽  
Rajan Bawa ◽  
Hari Sankhyan ◽  
D. Nayak ◽  
S.S. Sharma

The present study was conducted in Goshal, one of the largest villages of Lahaul valley of Himachal Pradesh during 2010 to 2013 to study the land use pattern of village Goshal by classifying the study area into three major ecosystems viz; Forest ecosystem, alpine pasture ecosystem and agro-ecosystem and to assess the soil physical properties of these ecosystems. Land use pattern in agro ecosystem revealed that of the total area of village Goshal, maximum area was occupied under second grade irrigated area and maximum area under non cultivable lands was reported under grasslands. Pea occupied maximum per cent area which showed the shifting of the farming community from traditional cropping pattern to cash crops. It was further observed that the villagers opted plantations of poplars and willows. The soil physical properties of all the three ecosystems were found medium in available nutrient status.


Sign in / Sign up

Export Citation Format

Share Document