In vitro and in vivo optimization of infrared laser treatment for injured peripheral nerves

2013 ◽  
Vol 46 (1) ◽  
pp. 34-45 ◽  
Author(s):  
Juanita J. Anders ◽  
Helina Moges ◽  
Xingjia Wu ◽  
Isaac D. Erbele ◽  
Stephanie L. Alberico ◽  
...  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhenghui Cheng ◽  
Yawen Zhang ◽  
Yinchao Tian ◽  
Yuhan Chen ◽  
Fei Ding ◽  
...  

Abstract Background Schwann cells (SCs) play a crucial role in the repair of peripheral nerves. This is due to their ability to proliferate, migrate, and provide trophic support to axon regrowth. During peripheral nerve injury, SCs de-differentiate and reprogram to gain the ability to repair nerves. Cysteine-rich 61 (Cyr61/CCN1) is a member of the CCN family of matrix cell proteins and have been reported to be abundant in the secretome of repair mediating SCs. In this study we investigate the function of Cyr61 in SCs. Results We observed Cyr61 was expressed both in vivo and in vitro. The promoting effect of Cyr61 on SC proliferation and migration was through autocrine and paracrine mechanisms. SCs expressed αvβ3 integrin and the effect of Cyr61 on SC proliferation and migration could be blocked via αvβ3 integrin. Cyr61 could influence c-Jun protein expression in cultured SCs. Conclusions In this study, we found that Cyr61 promotes SC proliferation and migration via αvβ3 integrin and regulates c-Jun expression. Our study contributes to the understanding of cellular and molecular mechanisms underlying SC’s function during nerve injury, and thus, may facilitate the regeneration of peripheral nerves after injury.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 70
Author(s):  
Lourdes Mateos-Hernández ◽  
Natália Pipová ◽  
Eléonore Allain ◽  
Céline Henry ◽  
Clotilde Rouxel ◽  
...  

Neuropeptides are small signaling molecules expressed in the tick central nervous system, i.e., the synganglion. The neuronal-like Ixodes scapularis embryonic cell line, ISE6, is an effective tool frequently used for examining tick–pathogen interactions. We detected 37 neuropeptide transcripts in the I. scapularis ISE6 cell line using in silico methods, and six of these neuropeptide genes were used for experimental validation. Among these six neuropeptide genes, the tachykinin-related peptide (TRP) of ISE6 cells varied in transcript expression depending on the infection strain of the tick-borne pathogen, Anaplasma phagocytophilum. The immunocytochemistry of TRP revealed cytoplasmic expression in a prominent ISE6 cell subpopulation. The presence of TRP was also confirmed in A. phagocytophilum-infected ISE6 cells. The in situ hybridization and immunohistochemistry of TRP of I. scapularis synganglion revealed expression in distinct neuronal cells. In addition, TRP immunoreaction was detected in axons exiting the synganglion via peripheral nerves as well as in hemal nerve-associated lateral segmental organs. The characterization of a complete Ixodes neuropeptidome in ISE6 cells may serve as an effective in vitro tool to study how tick-borne pathogens interact with synganglion components that are vital to tick physiology. Therefore, our current study is a potential stepping stone for in vivo experiments to further examine the neuronal basis of tick–pathogen interactions.


1987 ◽  
Vol 252 (6) ◽  
pp. G832-G839 ◽  
Author(s):  
A. P. Shepherd ◽  
G. L. Riedel ◽  
J. W. Kiel ◽  
D. J. Haumschild ◽  
L. C. Maxwell

Several laser-Doppler blood flowmeters are now commercially available; however, only one utilizes an infrared laser diode (Laserflo, TSI, St. Paul, MN). Because of this and other unique features such as its microprocessor-based signal analyzer, we evaluated this device's ability to measure tissue perfusion. Initially, we determined whether laser illumination directly affected the microvasculature. Intravital microscopic observations in the hamster cremaster muscle indicated that neither He-Ne nor infrared laser light affected the diameters of arterioles that were responsive to vasoactive agents. To test the flowmeter for linearity and repeatability, we used a rotating disk to simulate a light-scattering, flowing medium. The "flow" signal was highly correlated (r = 0.99) with the rotational velocity of the disk, was consistent among flow probes, and showed a high degree of reproducibility. The second model consisted of microsphere suspensions pumped through cuvettes. The laser-Doppler velocimeter (LDV) flow signal was linear with respect to pump output. With red blood cells in the perfusate, we examined the effects of blood oxygenation on the flowmeter's performance. The LDV flow signal was unaffected by changes in blood oxygenation. We evaluated linearity in vivo in isolated, perfused rat livers and in isolated canine gastric flaps. We observed linear relationships between total flow and laser-Doppler flow measured on the surface of the liver (r = 0.98) and in the gastric mucosa (r = 0.98), but the slopes of the relationships between total and local LDV flow showed considerable variability not noted in the in vitro studies.(ABSTRACT TRUNCATED AT 250 WORDS)


2010 ◽  
Vol 38 (03) ◽  
pp. 547-560 ◽  
Author(s):  
Chao-Tsung Chen ◽  
Jaung-Geng Lin ◽  
Tung-Wu Lu ◽  
Fuu-Jen Tsai ◽  
Chih-Yang Huang ◽  
...  

The present study provides in vitro and in vivo evaluations of earthworm (Pheretima aspergilum) on peripheral nerve regeneration. In the in vitro study, we found the earthworm (EW) water extracts caused a marked enhancement of the nerve growth factor-mediated neurite outgrowth from PC12 cells as well as the expressions of growth associated protein 43 and synapsin I. In the in vivo study, silicone rubber chambers filled with EW extracts were used to bridge a 10 mm sciatic nerve defect in rats. Eight weeks after implantation, the group receiving EW extracts had a much higher success percentage of regeneration (90%) compared to the control (60%) receiving the saline. In addition, quantitative histology of the successfully regenerated nerves revealed that myelinated axons in EW group at 31.25 μg/ml was significantly more than those in the controls (p < 0.05). These results showed that EW extracts can be a potential growth-promoting factor on regenerating peripheral nerves.


1998 ◽  
Vol 54 (1) ◽  
pp. 18-22
Author(s):  
Susan Mars ◽  
Anil Chuturgoon ◽  
Dhamarai Pillay ◽  
Maurice Mars

The effect of different doses of low intensity laser therapy (L.I.L.T.) on human fibroblasts was investigated to determine the optimal dose required to stimulate fibroblast proliferation. Human fibroblasts were cultured in vitro and irradiated with different energy densities of 83Onm continuous output infra-red laser using a Gallium Aluminium Arsenide laser. The fibroblasts were irradiated on three consecutive days at energy densities, ranging from 0.2 to 5 J.cm2, delivered at an average radiant power of 30 mW, and at a constant distance of lcm from the fibroblasts. Fibroblast activity was assessed on the fourth day using a calorimetric MTT (tetrazolium) cleavage assay. There was a significant increase in fibroblast proliferation at laser treatment energy densities of 0.4 J.cm2 and 5 J.cm2. Difficulties associated with in vivo and in vitro studies of the effect of laser treatment are discussed.


2012 ◽  
Vol 6 (1) ◽  
pp. 103-107 ◽  
Author(s):  
Mukai Chimutengwende-Gordon ◽  
Wasim Khan

End-to-end suture of nerves and autologous nerve grafts are the ‘gold standard’ for repair and reconstruction of peripheral nerves. However, techniques such as sutureless nerve repair with tissue glues, end-to-side nerve repair and allografts exist as alternatives. Biological and synthetic nerve conduits have had some success in early clinical studies on reconstruction of nerve defects in the hand. The effectiveness of nerve regeneration could potentially be increased by using these nerve conduits as scaffolds for delivery of Schwann cells, stem cells, neurotrophic and neurotropic factors or extracellular matrix proteins. There has been extensivein vitroandin vivoresearch conducted on these techniques. The clinical applicability and efficacy of these techniques needs to be investigated fully.


2021 ◽  
Vol 10 (1) ◽  
pp. e32610111403
Author(s):  
Khairuddin Djawad

Morbus Hansen is an infectious disease which causes by bacilli intracellular Mycobacterium leprae which mainly affects the skin and peripheral nerves. The leprosy reaction is an episode an immunologically mediated episode of acute or sub-acute inflammation that affecting skin, nerve, mucous membrane. Type 2 reactions can be last for months and the risk of developing a dependence on steroids. Pentoxifylline (PTX) works to hampers the production of TNFα in vitro and in vivo as an alternative for ENL treatment.  One case was reported in a male aged 28 years with complaints of recurring red bumps accompanied by fever and pain. On physical examination obtained erythema nodusum, with impaired sensibility in the left leg. The patient experienced improvement after being given therapy of neurodex/24 hours/oral, rifampicin 600mg, ofloxacin 400 mg, minocycline 100 mg which given 3x for a week, and combination therapy to treat the Leprosy reaction given the combination of methylprednisolone 16mg (3-2-0) and Pentoxifylline 400mg/8 hours/oral. In the 21 days of treatment, the redness lump improved in the middle finger and the left arm was gone. No new reddish bumps appeared and less tingling sensation.


1996 ◽  
Vol 84 (6) ◽  
pp. 1401-1410 ◽  
Author(s):  
Joanne Curley ◽  
Jenny Castillo ◽  
Joyce Hotz ◽  
Megumi Uezono ◽  
Sonia Hernandez ◽  
...  

Background Biodegradable microspheres are a useful method of drug delivery because they are both injectable and biodegradable, eliminating the need for surgical implantation or removal. Previous work has characterized implantable preparations of local anesthetics in polymer pellets for prolonged regional anesthesia. In this article, the authors characterize injectable suspensions of bupivacaine-polymer microspheres and examine whether they can produce prolonged blockade of the sciatic nerve in rats. Methods Microspheres were prepared using polylactic-co-glycolic acid polymers loaded with 75% w/w bupivacaine by a solvent evaporation method. Bupivacaine release from microspheres was determined in vitro by ultraviolet spectroscopy and scintillation counting. Sensory and motor blockade of the rat sciatic nerve were assessed in vivo after injection of microsphere suspensions. Results Depending on the type of microspheres, the dose, and the additive used, mean duration of sciatic nerve block ranged from 10 h to 5.5 days. Incorporation of 0.05% w/w dexamethasone into the microspheres resulted in significant prolongation of block (up to 13-fold), and only preparations that contained dexamethasone produced blocks lasting beyond 1 day. Bupivacaine was released in a controlled manner in vitro. Dexamethasone does not substantially slow bupivacaine release from microspheres in vitro. Conclusions Prolonged percutaneous blockade of peripheral nerves is feasible. The recovery from blockade is complete, and plasma bupivacaine levels are far below the range associated with systemic toxicity. The mechanisms underlying the dexamethasone block-prolonging effect are under investigation.


Sign in / Sign up

Export Citation Format

Share Document