Thermoresponsive Block Copolymer-Protein Conjugates Prepared by Grafting-from via RAFT Polymerization

2011 ◽  
Vol 32 (4) ◽  
pp. 354-359 ◽  
Author(s):  
Ming Li ◽  
Hongmei Li ◽  
Priyadarsi De ◽  
Brent S. Sumerlin
2017 ◽  
Vol 8 (39) ◽  
pp. 6086-6098 ◽  
Author(s):  
Ilknur Yildirim ◽  
Pelin Sungur ◽  
Anna C. Crecelius-Vitz ◽  
Turgay Yildirim ◽  
Diana Kalden ◽  
...  

A block copolymer library of polylactide and poly(2-hydroxyethyl acrylate) was prepared via sequential ring opening polymerization and RAFT polymerization in a one-pot approach.


2018 ◽  
Vol 42 (15) ◽  
pp. 12853-12864 ◽  
Author(s):  
Juan Han ◽  
Yunfeng Cai ◽  
Yun Wang ◽  
Xiaohui Dai ◽  
Lei Wang ◽  
...  

A novel type of responsive mixed double hydrophilic block copolymer (DHBC)-based multifunctional visual thermosensor for the detection of Al3+ and Fe3+ was designed and synthesized based on reversible addition fragmentation chain transfer (RAFT) polymerization.


2020 ◽  
Vol 11 (5) ◽  
pp. 1018-1024 ◽  
Author(s):  
Yifan Zhu ◽  
Eilaf Egap

We report herein the first example of light-controlled radical reversible addition–fragmentation chain transfer polymerization facilitated by cadmium selenide quantum dots and the grafting-from CdSe QDs to create polymer-QDs nanocomposites.


2020 ◽  
Vol 1000 ◽  
pp. 324-330
Author(s):  
Sri Agustina ◽  
Masayoshi Tokuda ◽  
Hideto Minami ◽  
Cyrille Boyer ◽  
Per B. Zetterlund

The self-assembly of block copolymers has attracted attention for many decades because it can yield polymeric nanoobjects with a wide range of morphologies. Membrane emulsification is a fairly novel technique for preparation of various types of emulsions, which relies on the dispersed phase passing through a membrane in order to effect droplet formation. In this study, we have prepared polymeric nanoparticles of different morphologies using self-assembly of asymmetric block copolymers in connection with membrane emulsification. Shirasu Porous Glass (SPG) membranes has been employed as the membrane emulsification equipment, and poly (oligoethylene glycol acrylate)-block-poly (styrene) (POEGA-b-PSt) copolymers prepared via RAFT polymerization. It has been found that a number of different morphologies can be achieved using this novel technique, including spheres, rods, and vesicles. Interestingly, the results have shown that the morphology can be controlled not only by adjusting experimental parameters specific to the membrane emulsification step such as membrane pore size and pressure, but also by changing the nature of organic solvent. As such, this method provides a novel route to these interesting nanoobjects, with interesting prospects in terms of exercising morphology control without altering the nature of the block copolymer itself.


Sign in / Sign up

Export Citation Format

Share Document