Magnetorheological Elastomer Composites: The Influence of Iron Particle Distribution on the Surface Morphology

2020 ◽  
Vol 389 (1) ◽  
pp. 1900053 ◽  
Author(s):  
Sneha Samal ◽  
Marcela Kolinova ◽  
Ignazio Blanco ◽  
Giovanni Dal Poggetto ◽  
Michelina Catauro
Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3017 ◽  
Author(s):  
Sneha Samal ◽  
Marcela Škodová ◽  
Ignazio Blanco

The smart materials subclass of magnetorheological elastomer (MRE) composites is presented in this work, which aimed to investigate the influence of filler distribution on surface morphology. Iron particles with sizes ranging from 20 to 150 µm were incorporated into the elastomer matrix and a 30% volume fraction (V%) was chosen as the optimal quantity for the filler amount in the elastomer composite. The surface morphology of MRE composites was examined by 3D micro-computed tomography (µCT) and scanning electron microscopy (SEM) techniques. Isotropic and anisotropic distributions of the iron particles were estimated in the magnetorheological elastomer composites. The filler particle distribution at various heights of the MRE composites was examined. The isotropic distribution of filler particles was observed without any influence from the magnetic field during sample preparation. The anisotropic arrangement of iron fillers within the MRE composites was observed in the presence of a magnetic field during fabrication. It was shown that the linear arrangement of the iron particle chain induced magnetization within the composite. Simulation analysis was also performed to predict the particle distribution of magnetization in the MREs and make a comparison with the experimental observations.


2021 ◽  
pp. 107754632110253
Author(s):  
Emiliano Rustighi ◽  
Diego F Ledezma-Ramirez ◽  
Pablo E Tapia-Gonzalez ◽  
Neil Ferguson ◽  
Azrul Zakaria

This article proposes a simple physical-based model to describe and predict the performance of axially compressed magnetorheological elastomer cylinders used as vibration and shock absorbers. The model describes the magnetorheological elastomer macroscopic stiffness changes because of an externally applied magnetic field from a microscopic composite cell of silicone rubber and carbonyl iron particle. Despite neglecting the material hyperelasticity, anisotropy and adjacent magnetic interaction, the model describes effectively the effect of the magnetic field on the macroscopic modulus of elasticity. The changes in the mechanical properties with the induced magnetic field are measured on samples of different particle concentration based on volume percentage, that is, 10 and 30 percent concentration of iron particles in a silicone rubber matrix. The manufacturing process of the samples is detailed, as well as the experimental validation of the effective stiffness change under a magnetic field in terms of transmissibility and mobility testing. However, the prediction seems to be limited by the linear elastic material model. Predictions and measurements are compared, showing that the model is capable of predicting the tunability of the dynamic/shock absorber and that the proposed devices have a possible application in the reduction of mechanical vibrations.


Friction ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 917-929 ◽  
Author(s):  
Rui Li ◽  
Xi Li ◽  
Yuanyuan Li ◽  
Ping-an Yang ◽  
Jiushan Liu

Abstract Magnetorheological elastomer (MRE) is a type of smart material of which mechanical and electrical properties can be reversibly controlled by the magnetic field. In this study, the influence of the magnetic field on the surface roughness of MRE was studied by the microscopic modeling method, and the influence of controllable characteristics of the MRE surface on its friction properties was analyzed by the macroscopic experimental method. First, on the basis of existing studies, an improved mesoscopic model based on magnetomechanical coupling analysis was proposed. The initial surface morphology of MRE was characterized by the W-M fractal function, and the change process of the surface microstructures of MRE, induced by the magnetic interaction between particles, was studied. Then, after analyzing the simulation results, it is found that with the increase in the magnetic field and decrease in the modulus of rubber matrix, the surface of MRE changes more significantly, and the best particle volume fraction is within 7.5%–9%. Furthermore, through experimental observation, it is found that the height of the convex peak on the surface of MRE decreases significantly with the action of the magnetic field, resulting in a reduction in the surface roughness. Consistent with the simulation results, a particle volume fraction of 10% corresponds to a maximum change of 14%. Finally, the macroscopic friction experiment results show that the friction coefficients of MREs with different particle volume fractions all decrease with the decrease in surface roughness under the magnetic field. When the particle volume fraction is 10%, the friction coefficient can decrease by 24.7% under a magnetic field of 400 mT, which is consistent with the trend of surface roughness changes. This shows that the change in surface morphology with the effect of the magnetic field is an important factor in the control of MRE friction properties by magnetic field.


2012 ◽  
Vol 714 ◽  
pp. 167-173 ◽  
Author(s):  
Marcin Masłowski ◽  
Marian Zaborski

Magnetorheological elastomer composites (MREs) based on different magnetoactive fillers such as: carbonyl iron powder (CIP), gamma iron oxide (γ-Fe2O3), micro-and nanosize Fe3O4 are reported and studied. MREs were obtained from various elastomer matrixes such as: ethylene propylene, acrylonitrile butadiene, silicone, ethylene-octene and polyoctenamer rubbers. To align particles in elastomer, cross-linking process took place in magnetic field. Effect of the amount of ferromagnetic particles and their arrangement on the microstructure and properties in relation to the external magnetic field was examined. The microstructure, magnetic and magnetoreological properties of compositions were investigated with scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and ARES Rheometer with magnetic device. Cross-linking density and mechanical properties of the composites were also studied. It was found that microstructure anisotropy has significant effect on the properties of magnetorheological elastomers. Moreover, different amount of magnetoactive fillers influence mechanical and magnetic properties of the vulcanizates. Many essential conclusions occur after application the wide variety of elastomer matrixes filled with different ferromagnetic particles in the context of preparation process of smart materials based on magnetorheological elastomer composites.


2012 ◽  
Vol 23 (9) ◽  
pp. 1033-1039 ◽  
Author(s):  
Faramarz Gordaninejad ◽  
Xiaojie Wang ◽  
Praveen Mysore

In this study, the behavior of thick magnetorheological elastomers is experimentally investigated. Two types of magnetorheological elastomer specimens of varying concentrations, with circular and rectangular shapes having thicknesses from 6.35 mm to a maximum of 25.4 mm, are prepared. The magnetorheological elastomer samples are studied under quasi-static compression and double lap-shear tests. The shear and the Young’s moduli of the magnetorheological elastomers are obtained under different applied magnetic fields. It is observed that the field-induced change in the modulus is independent of the thickness of the magnetorheological elastomer and is only dependent on the iron particle concentration and the magnetic field strength. With the increase in the applied magnetic field, it is observed that the change in modulus varies from a linear behavior at lower applied magnetic fields to a nonlinear one at higher magnetic fields. It is found that compressive and shear moduli only depend on the applied magnetic fields and are independent of the sample thickness. In addition, the maximum induced change in material modulus under compression is shown to be 99%, whereas in shear it is found to be 68% when compared to its off-state.


Polimery ◽  
2013 ◽  
Vol 58 (6) ◽  
pp. 443-449 ◽  
Author(s):  
ANNA BOCZKOWSKA ◽  
STEFAN AWIETJAN

Sign in / Sign up

Export Citation Format

Share Document