Determination of local material properties of laser beam welded aluminium-steel and aluminium-titanium compounds

2012 ◽  
Vol 43 (4) ◽  
pp. 321-327 ◽  
Author(s):  
A. Barr ◽  
M. Hunkel ◽  
A. von Hehl
2013 ◽  
Vol 465-466 ◽  
pp. 647-651 ◽  
Author(s):  
Saifulnizan Jamian ◽  
Mohammad Rusydi Zainal Abidin

In this paper, mechanical properties of Al functionally graded materials (FGMs) crash box fabricated by heat treatment is predicted based on temperature distribution and experimental data. The Al FGM crash box is fabricated by applying different temperature at the both ends of a square hollow Al column for 4 hours. Due to the gradient in heat treatment temperature along the height of the Al column, the microstructure is locally varied so that a certain variation of local material properties is achieved. The determination of material properties at any point along the height of Al FGM crash box experimentally is uneasy. The Lagrange interpolation method is proposed to predict the variation of local material properties at any point along the height of Al FGM crash box for further work such as simulation of impact on the crash box. The determination of mechanical properties is successfully predicted using the available experimental data and the temperature distribution obtained in simulation.


2003 ◽  
Vol 791 ◽  
Author(s):  
Vladimir P. Oleshko ◽  
James M. Howe

ABSTRACTQuantized high-frequency (∼1016 Hz) correlated longitudinal electron excitations (plasmons) generated in the energy-loss range 0–50 eV by fast electrons passing through any solid enable one to probe various states of matter. Their energy, Ep, is directly related to the density of valence electrons, thus allowing determination of solid-state properties that are governed by ground-state densities. Universal features and scaling in relations between Ep and the cohesive energy per atomic volume, bonding electron density and elastic constants have been established. The resulting correlations follow the universal binding energy relationship, thus providing new insights into the fundamental nature of structure-property relationships. They allow direct in situ determination of local material properties in an analytical electron microscope, as illustrated by examples utilizing Al- and Ti-based structural alloys.


2014 ◽  
Vol 48 (11) ◽  
pp. 3571-3584 ◽  
Author(s):  
Gerhard Fink ◽  
Andrea Frangi ◽  
Jochen Kohler

2013 ◽  
Vol 586 ◽  
pp. 146-149
Author(s):  
Pavel Hutař ◽  
Martin Ševčík ◽  
Ralf Lach ◽  
Zdeněk Knésl ◽  
Luboš Náhlík ◽  
...  

The paper presents a methodology for the lifetime assessment of welded polymer pipes. A fracture mechanics analysis of a butt-welded joint is performed by simulating radial crack growth in the nonhomogenous region of the pipe weld. It was found that the presence of material nonhomogeneity in the pipe weld caused by the welding procedure leads to an increase in the stress intensity factor of the radial crack and changes the usual failure mode of the pipe system. This can lead to a significant reduction in the lifetime of the pipe system.


Soft Matter ◽  
2018 ◽  
Vol 14 (1) ◽  
pp. 140-150 ◽  
Author(s):  
Christian Ganser ◽  
Caterina Czibula ◽  
Daniel Tscharnuter ◽  
Thomas Schöberl ◽  
Christian Teichert ◽  
...  

We present an atomic force microscopy based method to study viscoelastic material properties at low indentation depths with non-negligible adhesion and surface roughness.


Sign in / Sign up

Export Citation Format

Share Document