Semi‐active control of metal foam magnetorheological damper

2021 ◽  
Vol 52 (12) ◽  
pp. 1355-1362
Author(s):  
W. Yan ◽  
H. Huina ◽  
X. Wang ◽  
B. Xu ◽  
Y. He ◽  
...  
2017 ◽  
Vol 29 (1) ◽  
pp. 91-100 ◽  
Author(s):  
Donghong Ning ◽  
Shuaishuai Sun ◽  
Haiping Du ◽  
Weihua Li

In this article, an integrated active and semi-active seat suspension for heavy duty vehicles is proposed, and its prototype is built; an integrated control algorithm applied measurable variables (suspension relative displacement and seat acceleration) is designed for the proposed seat prototype. In this seat prototype, an active actuator with low maximum force output (70 N), which is insufficient for an active seat suspension to control the resonance vibration, is applied together with a rotary magnetorheological damper. The magnetorheological damper can suppress the high vibration energy in resonance frequency, and then a small active force can further improve the seat suspension performance greatly. The suspension’s dynamic property is tested with a MTS system, and its model is identified based on the testing data. A modified on–off controller is applied for the rotary magnetorheological damper. A [Formula: see text] controller with the compensation of a disturbance observer is used for the active actuator. Considering the energy saving, the control strategy is designed as that only when the magnetorheological damper is in the off state (0 A current), the active actuator will have active force output, or the active actuator is off. Both simulation and experiment are implemented to verify the proposed seat suspension and controller. In the sinusoidal excitations experiment, the acceleration transmissibility of integrated control seat has lowest value in resonance frequency and frequencies above the resonance, when compared with power on (0.7 A current), power off (0 A current) and semi-active control seat. In the random vibration experiment, the root mean square acceleration of integrated control seat suspension has 47.7%, 33.1% and 26.5% reductions when compared with above-mentioned three kinds of seat suspension. The power spectral density comparison indicates that the integrated seat suspension will have good performance in practical application. The integrated active and semi-active seat suspension can fill energy consumption gap between active and semi-active control seat suspension.


Author(s):  
Wendong Wang ◽  
Xing Ming ◽  
Yang Chu ◽  
Minghui Liu ◽  
Yikai Shi

To restrain the interference of micro-vibration caused by Control Moment Gyroscope, a new control method based on Magnetorheological damper was proposed in this paper. A mechanical model based on the structure of the presented design was built, and the semi-active control algorithm of damping force was proposed for the designed Magnetorheological damper. The magnetic flux density and other magnetic field parameters were considered and analyzed in Maxwell, and also the related hardware circuit which implements the control algorithm was prepared to test the presented design and algorithm. The results of simulation and experiments show that the presented Magnetorheological damper model and semi-active control algorithm can complete the requirements, and the vibration suppression method is efficient for Control Moment Gyroscope.


2016 ◽  
Vol 21 (6) ◽  
pp. 2310-2321 ◽  
Author(s):  
Qiang Xu ◽  
Jianyun Chen ◽  
Xiaopeng Liu ◽  
Jing Li ◽  
Chenyang Yuan

2010 ◽  
Vol 171-172 ◽  
pp. 654-658
Author(s):  
De Kun Yue ◽  
Qi Wang

Uncertainty for the building structure and nonlinear, this simulation of a multi-storey structure under earthquake is presented based on the BP neural network and system identification, controller will be built to effectively reduce the structural response, and to strengthen the unique damper performance.


Author(s):  
Sk. Faruque Ali ◽  
Ananth Ramaswamy

Magnetorheological dampers are intrinsically nonlinear devices, which make the modeling and design of a suitable control algorithm an interesting and challenging task. To evaluate the potential of magnetorheological (MR) dampers in control applications and to take full advantages of its unique features, a mathematical model to accurately reproduce its dynamic behavior has to be developed and then a proper control strategy has to be taken that is implementable and can fully utilize their capabilities as a semi-active control device. The present paper focuses on both the aspects. First, the paper reports the testing of a magnetorheological damper with an universal testing machine, for a set of frequency, amplitude, and current. A modified Bouc–Wen model considering the amplitude and input current dependence of the damper parameters has been proposed. It has been shown that the damper response can be satisfactorily predicted with this model. Second, a backstepping based nonlinear current monitoring of magnetorheological dampers for semi-active control of structures under earthquakes has been developed. It provides a stable nonlinear magnetorheological damper current monitoring directly based on system feedback such that current change in magnetorheological damper is gradual. Unlike other MR damper control techniques available in literature, the main advantage of the proposed technique lies in its current input prediction directly based on system feedback and smooth update of input current. Furthermore, while developing the proposed semi-active algorithm, the dynamics of the supplied and commanded current to the damper has been considered. The efficiency of the proposed technique has been shown taking a base isolated three story building under a set of seismic excitation. Comparison with widely used clipped-optimal strategy has also been shown.


2004 ◽  
Author(s):  
Woosoon Yim ◽  
Sahjendra N. Singh ◽  
Michael A. Minnicino II

Author(s):  
G Tsampardoukas ◽  
C W Stammers ◽  
E Guglielmino

A theoretical model is developed for the semi-active control of the suspension of a full passenger car using a variable-structure-type algorithm. Skyhook control and variants of balance control (cancelling or adding the dynamic spring forces) are applied via a magnetorheological damper at the front and rear wheels to improve the vehicle ride and handling. The magnetorheological damper is modelled via a Bouc—Wen approach. The semi-active vehicle response is compared with a passive response. The robustness of control is established by adding noise to the computed sensor inputs, and the loose-wire scenario is also considered. The results show that balance control is a robust algorithm. The magnitude of acceleration reduction (for the human body and head—neck complex) using semi-active control varies with the semi-active approach and vehicle speed (a simulated random road was assumed). At 30m/s the human body acceleration reduction was found to be 70 per cent with skyhook control and 40 per cent with balance control (cancelling the dynamic spring forces). The handling manoeuvres of the vehicle are presented utilizing BS ISO 3888-1 1999. The handling performance of the vehicle is significantly improved, when balance control by cancelling is applied on the rear dampers only. Using skyhook control and balance control by adding a spring force to the system it is not possible to improve the handling response of the vehicle.


2015 ◽  
Vol 23 (8) ◽  
pp. 1334-1353 ◽  
Author(s):  
Sy Dzung Nguyen ◽  
Quoc Hung Nguyen

This paper focuses on building a controller for active suspension system of train cars in the case that the sprung mass and model error are uncertainty parameters. The sprung mass is always varied due to many reasons such as changing of the passengers and load or impacting of wind on the operating train while an unknown difference between the suspension model used for survey and the real suspension system also always exists. The controller is built based on an adaptive neuro-fuzzy inference system (ANFIS), sliding mode control, uncertainty observer (NFSmUoC) and a magnetorheological damper (MRD) which can be seen as an actuator for applying active force. A nonlinear uncertainty observer (NUO), a sliding mode controller (SMC) together with an inverse model of the MRD are designed in order to calculate the current value by which the MRD creates the required active control force u( t). An ANFIS and measured MR-damper-dynamic-response data sets are used to identify the MRD as an inverse MRD model (ANFIS-I-MRD). Based on dynamic response of the suspension, firstly the active control force u( t) is calculated by NUO and SMC, in which the impact of the uncertainty load on the system is estimated by the NUO. The ANFIS-I-MRD is then used to estimate applied current for the MRD in order to create the calculated active control force to control vertical vibration status of the train cars. Simulation surveys are carried out to evaluate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document