scholarly journals Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst‐forming cyanobacterium Anabaena

2014 ◽  
Vol 3 (5) ◽  
pp. 777-792 ◽  
Author(s):  
Mireia Burnat ◽  
Enrique Flores
2010 ◽  
Vol 192 (19) ◽  
pp. 5165-5172 ◽  
Author(s):  
Rafael Pernil ◽  
Antonia Herrero ◽  
Enrique Flores

ABSTRACT In the diazotrophic filaments of heterocyst-forming cyanobacteria, an exchange of metabolites takes place between vegetative cells and heterocysts that results in a net transfer of reduced carbon to the heterocysts and of fixed nitrogen to the vegetative cells. Open reading frame alr2355 of the genome of Anabaena sp. strain PCC 7120 is the ald gene encoding alanine dehydrogenase. A strain carrying a green fluorescent protein (GFP) fusion to the N terminus of Ald (Ald-N-GFP) showed that the ald gene is expressed in differentiating and mature heterocysts. Inactivation of ald resulted in a lack of alanine dehydrogenase activity, a substantially decreased nitrogenase activity, and a 50% reduction in the rate of diazotrophic growth. Whereas production of alanine was not affected in the ald mutant, in vivo labeling with [14C]alanine (in whole filaments and isolated heterocysts) or [14C]pyruvate (in whole filaments) showed that alanine catabolism was hampered. Thus, alanine catabolism in the heterocysts is needed for normal diazotrophic growth. Our results extend the significance of a previous work that suggested that alanine is transported from vegetative cells into heterocysts in the diazotrophic Anabaena filament.


2021 ◽  
Author(s):  
Sergio Arévalo ◽  
Enrique Flores

Multicellular heterocyst-forming cyanobacteria such as Anabaena grow as chains of cells forming filaments that, under diazotrophic conditions, contain two cell types: vegetative cells that perform oxygenic photosynthesis and N2-fixing heterocysts. Along the filament, the intercellular septa contain a thick peptidoglycan layer that forms septal disks. Proteinaceous septal junctions connect the cells in the filament traversing the septal disks through nanopores. The fraCDE operon encodes proteins needed to make long filaments in Anabaena. FraC and FraD, located at the intercellular septa, are involved in the formation of septal junctions. Using a superfolder-GFP fusion, here we show that FraE is mainly localized to the poles of the heterocysts, consistent with the requirement of FraE for constriction of the heterocyst poles to form the “heterocyst neck”. A fraE insertional mutant was impaired by 22% to 38% in transfer of fluorescent calcein from vegetative cells to heterocysts. Septal disks were inspected in murein sacculi from heterocyst-enriched preparations. Unexpectedly, the diameter of the nanopores in heterocyst septa was about 1.5- to 2-fold larger than in vegetative cell septa. The number of these nanopores was 76% and 6% of the wild-type number in fraE or a fraC fraD mutant, respectively. Our results show that FraE is mainly involved in heterocyst maturation whereas FraC and FraD are needed for the formation of the large nanopores of heterocyst septa as they are for vegetative cell nanopores. Additionally, arrays of small pores conceivably involved in polysaccharide export were observed close to the disks in the heterocyst murein sacculi preparations. IMPORTANCE Intercellular communication, an essential attribute of multicellularity, is required for diazotrophic growth in heterocyst-forming cyanobacteria such as Anabaena, in which the cells are connected by proteinaceous septal junctions that are structural analogs of metazoan connexons. The septal junctions allow molecular intercellular diffusion traversing the septal peptidoglycan through nanopores. In Anabaena the fraCDE operon encodes septal proteins essential for intercellular communication. FraC and FraD are components of the septal junctions along the filament, whereas here we show that FraE is mainly present at the heterocyst poles. We found that the intercellular septa in murein sacculi from heterocysts contain nanopores that are larger than those in vegetative cells, establishing a previously unknown difference between heterocyst and vegetative cell septa in Anabaena.


2010 ◽  
Vol 192 (20) ◽  
pp. 5526-5533 ◽  
Author(s):  
Rocío López-Igual ◽  
Enrique Flores ◽  
Antonia Herrero

ABSTRACT Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that carries out N2 fixation in specialized cells called heterocysts, which exchange nutrients and regulators with the filament's vegetative cells that perform the photosynthetic fixation of CO2. The Anabaena genome carries two genes coding for alkaline/neutral invertases, invA and invB. As shown by Northern analysis, both genes were expressed monocistronically and induced under nitrogen deprivation, although induction was stronger for invB than for invA. Whereas expression of an InvA-N-GFP fusion (green fluorescent protein [GFP] fused to the N terminus of the InvA protein [InvA-N]) was homogeneous along the cyanobacterial filament, consistent with the lack of dependence on HetR, expression of an InvB-N-GFP fusion upon combined nitrogen deprivation took place mainly in differentiating and mature heterocysts. In an hetR genetic background, the InvB-N-GFP fusion was strongly expressed all along the filament. An insertional mutant of invA could grow diazotrophically but was impaired in nifHDK induction and exhibited an increased frequency of heterocysts, suggesting a regulatory role of the invertase-mediated carbon flux in vegetative cells. In contrast, an invB mutant was strongly impaired in diazotrophic growth, showing a crucial role of sucrose catabolism mediated by the InvB invertase in the heterocysts.


2002 ◽  
Vol 184 (14) ◽  
pp. 3931-3940 ◽  
Author(s):  
Olga A. Koksharova ◽  
C. Peter Wolk

ABSTRACT As an approach towards elucidation of the biochemical regulation of the progression of heterocyst differentiation in Anabaena sp. strain PCC 7120, we have identified proteins that bind to a 150-bp sequence upstream from hepC, a gene that plays a role in the synthesis of heterocyst envelope polysaccharide. Such proteins were purified in four steps from extracts of vegetative cells of Anabaena sp. Two of these proteins (Abp1 and Abp2) are encoded by neighboring genes in the Anabaena sp. chromosome. The genes that encode the third (Abp3) and fourth (Abp4) proteins are situated at two other loci in that chromosome. Insertional mutagenesis of abp2 and abp3 blocked expression of hepC and hepA and prevented heterocyst maturation and aerobic fixation of N2.


2019 ◽  
Vol 71 (6) ◽  
pp. 2018-2027
Author(s):  
Shoko Mihara ◽  
Kazunori Sugiura ◽  
Keisuke Yoshida ◽  
Toru Hisabori

Abstract In the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120, glucose 6-phosphate dehydrogenase (G6PDH) plays an important role in producing the power for reducing nitrogenase under light conditions. Our previous study showed that thioredoxin suppresses G6PDH by reducing its activator protein OpcA, implying that G6PDH is inactivated under light conditions because thioredoxins are reduced by the photosynthetic electron transport system in cyanobacteria. To address how Anabaena sp. PCC 7120 maintains G6PDH activity even under light conditions when nitrogen fixation occurs, we investigated the redox regulation system in vegetative cells and specific nitrogen-fixing cells named heterocysts, individually. We found that thioredoxin target proteins were more oxidized in heterocysts than in vegetative cells under light conditions. Alterations in the redox regulation mechanism of heterocysts may affect the redox states of thioredoxin target proteins, including OpcA, so that G6PDH is activated in heterocysts even under light conditions.


2020 ◽  
Vol 295 (17) ◽  
pp. 5751-5760
Author(s):  
Haehee Lee ◽  
Sangkee Rhee

In cyanobacteria, metabolic pathways that use the nitrogen-rich amino acid arginine play a pivotal role in nitrogen storage and mobilization. The N-terminal domains of two recently identified bacterial enzymes: ArgZ from Synechocystis and AgrE from Anabaena, have been found to contain an arginine dihydrolase. This enzyme provides catabolic activity that converts arginine to ornithine, resulting in concomitant release of CO2 and ammonia. In Synechocystis, the ArgZ-mediated ornithine–ammonia cycle plays a central role in nitrogen storage and remobilization. The C-terminal domain of AgrE contains an ornithine cyclodeaminase responsible for the formation of proline from ornithine and ammonia production, indicating that AgrE is a bifunctional enzyme catalyzing two sequential reactions in arginine catabolism. Here, the crystal structures of AgrE in three different ligation states revealed that it has a tetrameric conformation, possesses a binding site for the arginine dihydrolase substrate l-arginine and product l-ornithine, and contains a binding site for the coenzyme NAD(H) required for ornithine cyclodeaminase activity. Structure–function analyses indicated that the structure and catalytic mechanism of arginine dihydrolase in AgrE are highly homologous with those of a known bacterial arginine hydrolase. We found that in addition to other active-site residues, Asn-71 is essential for AgrE's dihydrolase activity. Further analysis suggested the presence of a passage for substrate channeling between the two distinct AgrE active sites, which are situated ∼45 Å apart. These results provide structural and functional insights into the bifunctional arginine dihydrolase–ornithine cyclodeaminase enzyme AgrE required for arginine catabolism in Anabaena.


2019 ◽  
Vol 201 (21) ◽  
Author(s):  
Li Wang ◽  
Gui-Ming Lin ◽  
Tian-Cai Niu ◽  
Shao-Ran Zhang ◽  
Ju-Yuan Zhang ◽  
...  

ABSTRACT In the filamentous multicellular cyanobacterium Anabaena sp. strain PCC 7120, 5 to 10% of the cells differentiate into heterocysts, which are specialized in N2 fixation. Heterocysts and vegetative cells are mutually dependent for filament growth through nutrient exchange. Thus, the heterocyst frequency should be optimized to maintain the cellular carbon and nitrogen (C/N) balance for filament fitness in the environment. Here, we report the identification of patD, whose expression is directly activated in developing cells by the transcription factor NtcA. The inactivation of patD increases heterocyst frequency and promotes the upregulation of the positive regulator of heterocyst development hetR, whereas its overexpression decreases the heterocyst frequency. The change in heterocyst frequency resulting from the inactivation of patD leads to the reduction in competitiveness of the filaments under combined-nitrogen-depleted conditions. These results indicate that patD regulates heterocyst frequency in Anabaena sp. PCC 7120, ensuring its optimal filament growth. IMPORTANCE Microorganisms have evolved various strategies in order to adapt to the environment and compete with other organisms. Heterocyst differentiation is a prokaryotic model for studying complex cellular regulation. The NtcA-regulated gene patD controls the ratio of heterocysts relative to vegetative cells on the filaments of Anabaena sp. strain PCC 7120. Such a regulation provides a mechanism through which carbon fixation by vegetative cells and nitrogen fixation by heterocysts are properly balanced to ensure optimal growth and keep a competitive edge for long-term survival.


Sign in / Sign up

Export Citation Format

Share Document