A novel mutation of PDE8B Gene in a Japanese family with autosomal-dominant striatal degeneration

2015 ◽  
Vol 30 (14) ◽  
pp. 1964-1967 ◽  
Author(s):  
Reo Azuma ◽  
Kinya Ishikawa ◽  
Kosei Hirata ◽  
Yuji Hashimoto ◽  
Makoto Takahashi ◽  
...  
2016 ◽  
Vol 25 (4) ◽  
pp. 135-138 ◽  
Author(s):  
Yoshimi Nishizaki ◽  
Makoto Hiura ◽  
Hidetoshi Sato ◽  
Yohei Ogawa ◽  
Akihiko Saitoh ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Rei Hirose ◽  
Yuya Tsurutani ◽  
Chiho Sugisawa ◽  
Kosuke Inoue ◽  
Sachiko Suematsu ◽  
...  

Abstract Background Pheochromocytoma and paraganglioma caused by succinate dehydrogenase gene mutations is called hereditary pheochromocytoma/paraganglioma syndrome. In particular, succinate dehydrogenase subunit B mutations are important because they are strongly associated with the malignant behavior of pheochromocytoma and paraganglioma . This is a case report of a family of hereditary pheochromocytoma/paraganglioma syndrome carrying a novel mutation in succinate dehydrogenase subunit B. Case presentation A 19-year-old Japanese woman, whose father died of metastatic paraganglioma, was diagnosed with abdominal paraganglioma, and underwent total resection. Succinate dehydrogenase subunit B genetic testing detected a splice-site mutation, c.424-2delA, in her germline and paraganglioma tissue. Afterwards, the same succinate dehydrogenase subunit B mutation was detected in her father’s paraganglioma tissues. In silico analysis predicted the mutation as “disease causing.” She is under close follow-up, and no recurrence or metastasis has been observed for 4 years since surgery. Conclusions We detected a novel succinate dehydrogenase subunit B mutation, c.424-2delA, in a Japanese family afflicted with hereditary pheochromocytoma/paraganglioma syndrome and found the mutation to be responsible for hereditary pheochromocytoma/paraganglioma syndrome. This case emphasizes the importance of performing genetic testing for patients with pheochromocytoma and paraganglioma suspected of harboring the succinate dehydrogenase subunit B mutation (that is, metastatic, extra-adrenal, multiple, early onset, and family history of pheochromocytoma and paraganglioma) and offer surveillance screening to mutation carriers.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Takuya Morikawa ◽  
Shiroh Miura ◽  
Takahisa Tateishi ◽  
Kazuhito Noda ◽  
Hiroki Shibata

AbstractSpastic paraplegia (SPG) type 4 is an autosomal dominant SPG caused by functional variants in the SPAST gene. We examined a Japanese family with three autosomal dominant SPG patients. These patients presented with typical symptoms of SPG, such as spasticity of the lower limbs. We identified a rare nonsynonymous variant, NM_014946.4:c.1252G>A [p.Glu418Lys], in all three family members. This variant has previously been reported in a Russian SPG family as a “likely pathogenic” variant.5 Ascertainment of additional patients carrying this variant in an unrelated Japanese SPG family further supports its pathogenicity. Molecular diagnosis of SPG4 in this family with hereditary spastic paraplegia is confirmed.


Blood ◽  
2002 ◽  
Vol 100 (2) ◽  
pp. 692-694 ◽  
Author(s):  
Daniel F. Wallace ◽  
Palle Pedersen ◽  
Jeannette L. Dixon ◽  
Peter Stephenson ◽  
Jeffrey W. Searle ◽  
...  

Abstract Hemochromatosis is a common disorder characterized by excess iron absorption and accumulation of iron in tissues. Usually hemochromatosis is inherited in an autosomal recessive pattern and is caused by mutations in the HFE gene. Less common non-HFE–related forms of hemochromatosis have been reported and are caused by mutations in the transferrin receptor 2 gene and in a gene localized to chromosome 1q. Autosomal dominant forms of hemochromatosis have also been described. Recently, 2 mutations in theferroportin1 gene, which encodes the iron transport protein ferroportin1, have been implicated in families with autosomal dominant hemochromatosis from the Netherlands and Italy. We report the finding of a novel mutation (V162del) in ferroportin1 in an Australian family with autosomal dominant hemochromatosis. We propose that this mutation disrupts the function of the ferroportin1 protein, leading to impaired iron homeostasis and iron overload.


2007 ◽  
Vol 86 (1) ◽  
pp. 69-72 ◽  
Author(s):  
M. Kida ◽  
Y. Sakiyama ◽  
A. Matsuda ◽  
S. Takabayashi ◽  
H. Ochi ◽  
...  

Amelogenesis imperfecta (AI) is a hereditary disease with abnormal dental enamel formation. Here we report a Japanese family with X-linked AI transmitted over at least four generations. Mutation analysis revealed a novel mutation (p.P52R) in exon 5 of the amelogenin gene. The mutation was detected as heterozygous in affected females and as hemizygous in their affected father. The affected sisters exhibited vertical ridges on the enamel surfaces, whereas the affected father had thin, smooth, yellowish enamel with distinct widening of inter-dental spaces. To study the pathological cause underlying the disease in this family, we synthesized the mutant amelogenin p.P52R protein and evaluated it in vitro. Furthermore, we studied differences in the chemical composition between normal and affected teeth by x-ray diffraction analysis and x-ray fluorescence analysis. We believe that these results will greatly aid our understanding of the pathogenesis of X-linked AI.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Bing-Bing Guo ◽  
Jie-Yuan Jin ◽  
Zhuang-Zhuang Yuan ◽  
Lei Zeng ◽  
Rong Xiang

Pseudoachondroplasia (PSACH) is an autosomal dominant skeletal dysplasia with an estimated incidence of ~1/60000 that is characterized by disproportionate short stature, brachydactyly, joint laxity, and early-onset osteoarthritis. COMP encodes the cartilage oligomeric matrix protein, which is expressed predominantly in the extracellular matrix (ECM) surrounding the cells that make up cartilage, ligaments, and tendons. Mutations in COMP are known to give rise to PSACH. In this study, we identified a novel nucleotide mutation (NM_000095.2: c.1317C>G, p.D439E) in COMP responsible for PSACH in a Chinese family by employing whole-exome sequencing (WES) and built the structure model of the mutant protein to clarify its pathogenicity. The novel mutation cosegregated with the affected individuals. Our study expands the spectrum of COMP mutations and further provides additional genetic testing information for other PSACH patients.


2020 ◽  
Author(s):  
xiaoqing li ◽  
fei han ◽  
qianlong chen ◽  
tienan zhu ◽  
yongqiang zhao ◽  
...  

Abstract Background: Reversible splenial lesion syndrome (RESLES) is a clinico-radiological syndrome characterized by the presence of reversible lesions specifically involving the splenium of the corpus callosum (SCC). The cause of RESLES is unknown. However, infectious-related mild encephalitis/encephalopathy (MERS) with a reversible splenial lesion remains the most common cause of reversible splenial lesions. Acute intermittent porphyria (AIP) is an autosomal dominant disorder caused by a partial deficiency of porphobilinogen deaminase (PBGD), the third enzyme in the heme biosynthetic pathway. It can affect the autonomic, peripheral, and central nervous system. Result: In this study, we report a 20-year-old woman with AIP who presented with MRI manifestations suggestive of RESLES, she had a novel HMBS nonsense mutation, a G to A mutation in base 594, which changed tryptophan to a stop codon (W198*). Conclusion: To the best of our knowledge, this is only one published case of RELES associated with AIP.


Sign in / Sign up

Export Citation Format

Share Document