Time of low-dose acetylsalicylic acid administration influences in vivo platelet function and thrombus formation following arteriotomy and intimectomy; an experimental study in small arteries of Rabbits

Microsurgery ◽  
1990 ◽  
Vol 11 (3) ◽  
pp. 209-214 ◽  
Author(s):  
Lars Salemark ◽  
Jan B. Wieslander ◽  
Peter Dougan ◽  
Björn Arnljots
2007 ◽  
Vol 36 (3) ◽  
pp. 267-273 ◽  
Author(s):  
Line A. Nielsen, ◽  
Nora E. Zois, ◽  
Henrik D. Pedersen, ◽  
Lisbeth H. Olsen, ◽  
Inge Tarnow

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Ahmed Alarabi ◽  
Zubair Karim ◽  
Victoria Hinojos ◽  
Patricia A Lozano ◽  
Keziah Hernandez ◽  
...  

Platelet activation involves tightly regulated processes to ensure a proper hemostasis response, but when unbalanced, can lead to pathological consequences such as thrombus formation. G-protein coupled receptors (GPCRs) regulate platelet function by interacting with and mediating the response to various physiological agonists. To this end, an essential mediator of GPCR signaling is the G protein Gαβγ heterotrimers, in which the βγ subunits are central players in downstream signaling pathways. While much is known regarding the role of the Gα subunit in platelet function, that of the βγ remains poorly understood. Therefore, we investigated the role of Gβγ subunits in platelet function using a Gβγ (small molecule) inhibitor, namely gallein. We observed that gallein inhibits platelet aggregation and secretion in response to agonist stimulation, in both mouse and human platelets. Furthermore, gallein also exerted inhibitory effects on integrin αIIbβ3 activation and clot retraction. Finally, gallein’s inhibitory effects manifested in vivo , as documented by its ability to modulate physiological hemostasis and delay thrombus formation. Taken together, our findings demonstrate, for the first time, that Gβγ directly regulates GPCR-dependent platelet function, in vitro and in vivo . Moreover, these data highlight Gβγ as a novel therapeutic target for managing thrombotic disorders.


2006 ◽  
Vol 95 (02) ◽  
pp. 354-361 ◽  
Author(s):  
Oliver Berg ◽  
Axel Heimann ◽  
Thomas Münzel ◽  
Christian-Friedrich Vahl ◽  
Oliver Kempski ◽  
...  

SummaryApplication of clopidogrel before percutaneous coronary intervention in patients with acute coronary syndrome reduces the risk of cardiac events. Clopidogrel administration before surgery increases bleeding complications after CABG. Therefore, the antithrombotic effect of the low-dose combination of clopidogrel and aspirin was investigated in an in vivo pig model of coronary artery thrombus formation with cyclic flow reductions. The platelet inhibitory effect was determined by platelet aggregation and CFR, according to the methodology described by Folts. CFR were initiated by endothelial damage and placement of a constrictor around the LAD. 30 min after CFR were established, clopidogrel (0.1 mg/kg or5 mg/kg), aspirin (1 mg/kg or 7 mg/kg) or LDC (0.1 mg/kg clopidogrel and 1 mg/kg aspirin) were administered orally. CFR-frequency was determined for further 240 min. CFR-frequency (CFR/30 min) was significantly reduced at 60 min in response to aspirin (7 mg/kg, −48%, p<0.05), and at 120 min in response to clopidogrel (5 mg/kg, −65%, p<0.05) but not at low doses of either compound. In contrast, LDC of clopidogrel (0.1 mg/kg) plus aspirin (1 mg/kg) resulted in a complete and rapid abrogation of CFR at 90 min (−70%, p<0.05). Furthermore, LDC led to reduction of platelet aggregation when CFR-frequency was already significantly decreased. In contrast, high dose groups presented a significant reduction of platelet aggregation prior to CFR-frequency decrease. Low dose combination of clopidogrel plus aspirin demonstrates a potent over additive anti-thrombotic effect in vivo with a significant reduction in thrombus formation early after drug application. The effect occurs before inhibition of platelet aggregation is detectable.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3926-3926 ◽  
Author(s):  
Subia Tasneem ◽  
Adili Reheman ◽  
Heyu Ni ◽  
Catherine P.M. Hayward

Abstract Studies of mice with genetic deficiencies have provided important insights on the functions of many proteins in thrombosis and hemostasis. Recently, a strain of mice (C57BL/6JOlaHsd, an inbred strain of C57BL/6J) has been identified to have a spontaneous, tandem deletion of the multimerin 1 and α-synuclein genes, which are also adjacent genes on human chromosome 4q22. Multimerin 1 is an adhesive protein found in platelets and endothelial cells while α-synuclein is a protein found in the brain and in blood that is implicated in neurodegenerative diseases and exocytosis. In vitro, multimerin 1 supports platelet adhesion while α-synuclein inhibits α-granule release. We postulated that the loss of multimerin 1 and α-synuclein would alter platelet function and that recombinant human multimerin 1 might correct some of these abnormalities. We compared platelet adhesion, aggregation and thrombus formation in vitro and in vivo in C57BL/6JOlaHsd and C57BL/6 mice. Thrombus formation was studied by using the ferric-chloride injured mesenteric arteriole thrombosis model under intravital microscopy. We found that platelet adhesion, aggregation and thrombus formation in C57BL/6JOlaHsd were significantly impaired in comparison to control, C57BL/6 mice. The number of single platelets, deposited 3–5 minutes after injury, was significantly decreased in C57BL/6JOlaHsd mice (P <0.05, platelets/min: C57BL/6 = 157 ± 15, n=16; C57BL/6JOlaHsd = 77 ± 13, n=17). Moreover, thrombus formation in these mice was significantly delayed. Thrombi in C57BL/6JOlaHsd were unstable and easily dissolved, which resulted in significant delays (P<0.001) in vessel occlusion (mean occlusion times: C57BL/6 = 15.6 ± 1.2 min, n=16; C57BL/6JOlaHsd = 31.9 ± 2.1 min, n=17). We further tested platelet function in these mice by ADP and thrombin induced platelet aggregation using platelet rich plasma and gel-filtered platelets, respectively. Although no significant differences were seen with ADP aggregation, thrombin-induced platelet aggregation was significantly impaired in C57BL/6JOlaHsd mice. Platelet adhesion to type I collagen (evaluated using microcapillary chambers, perfused at 1500 s−1 with whole blood) was also impaired in C57BL/6JOlaHsd mice. However, platelets from C57BL/6JOlaHsd mice showed a normal pattern of agonist-induced release of α-granule P-selectin. Multimerin 1 corrected the in vitro aggregation and adhesion defects of C57BL/6JOlaHsd platelets. Furthermore, the transfusion of multimerin 1 into C57BL/6JOlaHsd mice corrected the impaired platelet deposition and thrombus formation in vivo. No significant difference was found in tail bleeding time between the two groups of mice. As α-synuclein knockout mice have a shortened time to thrombus formation (Circulation2007;116:II_76), the effects of multimerin 1 on impaired platelet function in C57BL/6JOlaHsd mice provide supportive evidence that multimerin 1 contributes to platelet adhesion and thrombus formation at the site of vessel injury. The findings suggest multimerin 1 knockout mice will be useful to explore platelet function. The first two authors and participating laboratories contributed equally to this study.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2168-2168
Author(s):  
Lu Wang ◽  
Yi Wu ◽  
Junsong Zhou ◽  
Syed S. Ahmad ◽  
Bulent Mutus ◽  
...  

Abstract Abstract 2168 Several members of the protein disulfide isomerase family of enzymes are important in platelet function and in thrombosis. Platelet protein disulfide isomerase (PDI) has been shown to have an important role in platelet function but is reported to not be required for thrombus formation in vivo. A novel platelet PDI called ERp57 mediates platelet aggregation but its role in thrombus formation is unknown. To determine the specific role of platelet-derived ERp57 in hemostasis and thrombosis we generated a megakaryocyte/platelet specific knockout. Despite normal platelet counts and platelet glycoprotein expression, mice with ERp57-deficient platelets had prolonged tail-bleeding times and thrombus occlusion times, and defective activation of the αIIbβ3 integrin and platelet aggregation. The aggregation defect was corrected by addition of exogenous ERp57 implicating surface ERp57 in platelet aggregation. Platelet surface ERp57 protein and activity increased substantially with platelet activation. We conclude that platelet-derived ERp57 is required for hemostasis and thrombosis and platelet function. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3442-3442 ◽  
Author(s):  
Reheman Adili ◽  
Theodore R Holman ◽  
Michael Holinstat

Abstract Background: Adequate platelet reactivity is required for platelet adhesion and aggregation at the site of vascular injury to maintain hemostasis. However, excessive platelet reactivity can also lead to the formation of occlusive thrombi, the predominate underlying cause of myocardial infarction and stroke. While current anti-platelet treatments limit platelet function, they often result in an increased risk of bleeding. 12-lipoxygenase (12-LOX), an oxygenase highly expressed in the platelet, has been demonstrated by our lab and others to regulate PAR4 and GPVI-mediated platelet reactivity suggesting a role of 12-LOX in regulation of vivo thrombosis. However, the ability to pharmacologically target 12-LOX in vivo has not been established to date. Aims: To determine how 12-LOX regulates thrombus formation in vivo and whether platelet 12-LOX is an effective target for anti-platelet therapeutics, wild-type (WT) or 12-LOX deficient (12-LOX-/-) mice were treated with or without the 12-LOX inhibitor, ML355, and were assessed for inhibitory effects on platelet activation in vitro, ex-vivo and in vivo. Methods: The effect of the novel 12-LOX inhibitor ML355 on human platelet function was assessed in vitro by platelet aggregometry, ex vivo by perfusion chamber. In vivo thrombus formation and vessel occlusion in small and large vessels were studied in 12-LOX-/-, WT mice and mice treated with ML355 using intravital microscopy using the FeCl3 injury models. Results: Using in vitro platelet aggregation assays, ML355 dose dependently inhibited thrombin, PAR1-AP, and PAR4-AP-induced aggregation in washed human platelets. Interestingly, the negative regulatory effects of ML355 inhibition of 12-LOX can be overcome by high concentration of thrombin. Additionally, ML355 was able to attenuate ADP-induced platelet aggregation both in platelet-rich-plasma and whole blood. In ex vivo flow chamber assays, platelet adhesion and thrombus formation on collagen-coated surfaces at high shear was attenuated in both mouse and human whole blood after incubation with ML355. Further, platelet aggregation and thrombus growth in 12-LOX-/- mice was impaired in FeCl3-induced mesenteric or carotid artery thrombosis models. Thrombi in 12-LOX-/- mice were unstable and frequently form emboli, which resulted in impaired vessel occlusion or reopening. Additionally, thrombus formation and vessel occlusion was impaired in ML355 treated WT mice. Conclusions: The highly selective 12-LOX inhibitor ML355 inhibits platelets aggregation induced by various platelet agonists and ML355 inhibition of platelet function is not agonist specific. Platelet function at high shear in ex vivo conditions in both mice and human was attenuated in the presence of ML355. Thrombus growth, stability, and vessel occlusion was impaired in mice deficient for 12-LOX. Finally, the highly selective 12-LOX inhibitor ML355 attenuates thrombus formation and prevents vessel occlusion in vivo. Our data strongly indicates 12- LOX is an important determinant of platelet reactivity and inhibition of platelet 12-LOX may represent a new target for anti-platelet therapeutics. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document