Design and simulation analysis of THz wave parabolic antenna with beam deflection

Author(s):  
Xiang Shi
Author(s):  
T. Yanaka ◽  
K. Shirota

It is significant to note field aberrations (chromatic field aberration, coma, astigmatism and blurring due to curvature of field, defined by Glaser's aberration theory relative to the Blenden Freien System) of the objective lens in connection with the following three points of view; field aberrations increase as the resolution of the axial point improves by increasing the lens excitation (k2) and decreasing the half width value (d) of the axial lens field distribution; when one or all of the imaging lenses have axial imperfections such as beam deflection in image space by the asymmetrical magnetic leakage flux, the apparent axial point has field aberrations which prevent the theoretical resolution limit from being obtained.


Author(s):  
P. Hagemann

The use of computers in the analytical electron microscopy today shows three different trends (1) automated image analysis with dedicated computer systems, (2) instrument control by microprocessors and (3) data acquisition and processing e.g. X-ray or EEL Spectroscopy.While image analysis in the T.E.M. usually needs a television chain to get a sequential transmission suitable as computer input, the STEM system already has this necessary facility. For the EM400T-STEM system therefore an interface was developed, that allows external control of the beam deflection in TEM as well as the control of the STEM probe and video signal/beam brightness on the STEM screen.The interface sends and receives analogue signals so that the transmission rate is determined by the convertors in the actual computer periphery.


Author(s):  
K. Ishizuka ◽  
K. Shirota

In a conventional alignment for high-resolution electron microscopy, the specimen point imaged at the viewing-screen center is made dispersion-free against a voltage fluctuation by adjusting the incident beam direction using the beam deflector. For high-resolution works the voltage-center alignment is important, since this alignment reduces the chromatic aberration. On the other hand, the coma-free alignment is also indispensable for high-resolution electron microscopy. This is because even a small misalignment of the incident beam direction induces wave aberrations and affects the appearance of high resolution electron micrographs. Some alignment procedures which cancel out the coma by changing the incident beam direction have been proposed. Most recently, the effect of a three-fold astigmatism on the coma-free alignment has been revealed, and new algorithms of coma-free alignment have been proposed.However, the voltage-center and the coma-free alignments as well as the current-center alignment in general do not coincide to each other because of beam deflection due to a leakage field within the objective lens, even if the main magnetic-field of the objective lens is rotationally symmetric. Since all the proposed procedures for the coma-free alignment also use the same beam deflector above the objective lens that is used for the voltage-center alignment, the coma-free alignment is only attained at the sacrifice of the voltage-center alignment.


2019 ◽  
Vol 21 (44) ◽  
pp. 24478-24488 ◽  
Author(s):  
Martin Gleditzsch ◽  
Marc Jäger ◽  
Lukáš F. Pašteka ◽  
Armin Shayeghi ◽  
Rolf Schäfer

In depth analysis of doping effects on the geometric and electronic structure of tin clusters via electric beam deflection, numerical trajectory simulations and density functional theory.


2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


Sign in / Sign up

Export Citation Format

Share Document