Design of a co‐planar waveguide‐fed flexible ultra‐wideband ‐ multiple‐input multiple‐output antenna with dual band‐notched characteristics for wireless body area network

Author(s):  
Chengzhu Du ◽  
Zhipeng Yang ◽  
Gaoya Jin ◽  
Shunshi Zhong
2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Kyeol Kwon ◽  
Jaegeun Ha ◽  
Soonyong Lee ◽  
Jaehoon Choi

A dual-band on-body antenna for a wireless body area network repeater system is proposed. The designed dual-band antenna has the maximum radiation directed toward the inside of the human body in the medical implantable communication service (MICS) band in order to collect vital information from the human body and directed toward the outside in the industrial, scientific, and medical (ISM) band to transmit that information to a monitoring system. In addition, the return loss property of the antenna is insensitive to human body effects by utilizing the epsilon negative zeroth-order resonance property.


2014 ◽  
Vol 6 (5) ◽  
pp. 537-541 ◽  
Author(s):  
Heejong Lee ◽  
Seok-Jae Lee ◽  
Won-Sang Yoon ◽  
Sang-Min Han

An FM-ultra-wideband (UWB) system with a wideband RF carrier (WRC) is proposed for wireless body area network applications. The proposed system can control the channel power by means of an adjustable carrier bandwidth (BW), while the conventional one with a CW carrier (CWC) makes use of peak power control. The implemented WRC system performances have been evaluated for the WRC generation and digital data transmission. In addition, transmission performances have been compared with that of a conventional CWC system by bit-error-rate (BER) tests. For random data of a 29−1 pattern at a data-rate of 64 kbps, in spite of the flexible carrier BW, the WRC system has presented excellent transmission capability compared with that of the CWC system.


Sign in / Sign up

Export Citation Format

Share Document