Miniaturized design of coupled bi‐element array antenna using sequential inductive and interdigital capacitive circuits

Author(s):  
Reza Zaker
Keyword(s):  
2018 ◽  
Vol 17 (4) ◽  
pp. 617-620 ◽  
Author(s):  
Siti Nailah Mastura Zainarry ◽  
Nghia Nguyen-Trong ◽  
Christophe Fumeaux
Keyword(s):  

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Janam Maharjan ◽  
Dong-You Choi

The paper proposes a simple four-element microstrip patch array antenna fed with corporate-series technique. The paper compares the proposed design with four-element antennas fed with only series-fed and corporate-fed microstrip antennas. All three antenna designs use rectangular microstrip patch elements with two insets and slots on both sides of the patch. The patch elements are accompanied by Yagi elements: three director elements and two reflector elements. Through comparison of simulation results, the paper shows that four-element array antenna with combined corporate-series feeding technique performs better compared to antennas with only either series or corporate feeding network. The proposed corporate-series fed antenna achieves better performance with wide frequency bandwidth of 25.04–30.87 GHz and gain of 9.5 dB. The antenna has an end-fire radiation pattern. Overall performance shows that the proposed corporate-series-fed microstrip patch antenna with Yagi elements is suitable for next generation 5G communication.


2012 ◽  
Vol 721 ◽  
pp. 331-336
Author(s):  
Paul Ratnamahilan Polycarp Hoole ◽  
Nur Farah Aziz ◽  
Velappa Ganapathy ◽  
Kanesan Jeevan ◽  
Ramiah Harikrishnan ◽  
...  

Abstract. Cloud to ground and cloud to cloud lightning flashes pose a threat to the aircraft body and the electronic systems inside the aircraft. In this paper we present a single unit, as opposed to a three unit, lightning locator mounted on the aircraft that uses the wave-shapes of electromagnetic fields radiated by lightning and electrical activity ahead of the aircraft to locate the distance range of lightning activity. A three element array antenna scans the area ahead of the aircraft to narrow down the area ahead where the lightning or threatening electrical activity is. Moreover, the unique shape of the electric fields depending on the distance from the lightning activity is used by a neural network to train and recognize the distance range of the lightning activity from the aircraft on which the lightning detector is mounted. The combined use of the three element array antenna and the neural network provides the required knowledge of lightning activity for the pilot to take evasive action.


2020 ◽  
Vol 17 (2) ◽  
pp. 1009-1013
Author(s):  
Lorothy Morrison Buah Singkang ◽  
Kismet Anak Hong Ping ◽  
P. R. P. Hoole

A substation is an important unit in the electric power system. Thus, the monitoring process must be carried out effectively to detect the operation status of the equipment, and pre-fault threat detection is necessary for safe operation. Many methods and intelligent techniques have been developed to provide a better way of fault detection. However, power authorities unwilling to adopt those techniques due to the high cost of installation and more sensors required to improve localization accuracy. Therefore, to reduce cost and increase the speed of detection, this paper presents a 2-element array antenna acted like a sensor to detect and localize the electric discharges from abnormal radiated electromagnetic activities in the substation based on the direction of arriving angle (DOA) received by the array antenna. Software implemented signal processor was used to obtain the radiation patterns for different value of DOA relative to the normalized Array Factor (AFN). This 2-element Sensor was proven to eliminate the undesired signals (such as electromagnetic signals from outside the substation) and maximize the signals in the direction of the desired signal by detecting the DOA of abnormal radiation from power apparatus (such as power transformer or circuit breaker bushings) inside the substation. It was proven that this cohesive unit was able to perform the two tasks by simultaneously eliminating or maximizing signals with very small (such as 0.0873 radians) angle difference between external radiation and radiation from apparatus inside the substation. By performing these tasks, the 2-element Sensor was promisingly able to detect and localize the abnormal electrical activities such as Electric Corona and Electric Arcs discharges that may occur in any substation based on the identified DOA from the power apparatus within the substation as a preventative approach for substation breakdown and to improve the efficiency and the performance of fault detection technique in future Substation Fault Monitoring.


2020 ◽  
Vol 10 (5) ◽  
pp. 6259-6263
Author(s):  
D. T. T. My ◽  
H. N. B. Phuong ◽  
T. T. Huong ◽  
B. T. M. Tu

This paper proposes the design of a four-element array planar antenna based on a single antenna that combines the Double Positive (DPS) and Epsilon Negative (ENG) materials. The single antenna consists of a microstrip segment (which is equivalent to a DPS material) connected to a grounded microstrip segment (which is equivalent to an ENG material). T-Junction power dividers with one-input and two-output ports are used for feeding the two-element and the four-element array antennas. The proposed array antenna is designed to operate optimally at 30GHz frequency under Finite Element Method (FEM)-based simulation. The obtained simulation results show that the proposed array antennas have good radiation performances, in which the four-element array antenna has a -10dB bandwidth ranging from 28.7 to 33.4GHz and 12.9dBi gain.


In wireless communication systems, designing of antennae with required parameters is an challenging issue. So, The approach in this paper is to design a corporate fed 2 element antenna array is designed to operate at 2.4 GHz using an FR-4 substrate of height h=1.6mm. For wireless application all the antenna parameters are analysed for two element array antenna with element spacing λ, λ/2 and with miters. It is observed that bandwidth decreases by decreasing the element spacing. But by using miters for antenna with element spacing bandwidth and reflection coefficient are improved. All the antennae are fabricated and tested using VNA E5071C.


Sign in / Sign up

Export Citation Format

Share Document