scholarly journals Four-Element Microstrip Patch Array Antenna with Corporate-Series Feed Network for 5G Communication

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Janam Maharjan ◽  
Dong-You Choi

The paper proposes a simple four-element microstrip patch array antenna fed with corporate-series technique. The paper compares the proposed design with four-element antennas fed with only series-fed and corporate-fed microstrip antennas. All three antenna designs use rectangular microstrip patch elements with two insets and slots on both sides of the patch. The patch elements are accompanied by Yagi elements: three director elements and two reflector elements. Through comparison of simulation results, the paper shows that four-element array antenna with combined corporate-series feeding technique performs better compared to antennas with only either series or corporate feeding network. The proposed corporate-series fed antenna achieves better performance with wide frequency bandwidth of 25.04–30.87 GHz and gain of 9.5 dB. The antenna has an end-fire radiation pattern. Overall performance shows that the proposed corporate-series-fed microstrip patch antenna with Yagi elements is suitable for next generation 5G communication.

2017 ◽  
Vol MCSP2017 (01) ◽  
pp. 17-22
Author(s):  
Simpal Kumari ◽  
Deepak Kumar Barik ◽  
Satyasis Mishra

In this paper a wide band microstrip patch for next generation of wireless communication is proposed with three different configuration of patch array are designed with different orientation and excitation phase at 28GHz for 5th generation application. To think the current generation of the cellular mobile communication the rapidly increasing number of mobile devices, voluminous data and higher data rate are pushing. The proposed antenna is benefited at 28GHz frequency band. For the matching between radiating patch and the microstrip feedline inset feeding technique is used. With different orientation the excitation are changed to study the radiation pattern of each patch array antenna. The parameter presented , ,radiation pattern ,gain, directivity after simulation using HFSS software. The designed antenna are able to operate at 28 GHz which is shown by simulation result.antenna1 provide beam shifting cover the angle up to 60,and antenna2 beam shifting cover the angle up to 47 while the antenna3 is 102.Based on the simulation result at 28GHz the proposed antenna can cover 5G requirements. the gain of antenna is 9.20 dB with a directivity 7.42 dB and a bandwidth of more than 3GHz is obtained.


2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Hongmin Lee ◽  
Jinwon Park

This paper presents the isolation improvement techniques of a microstrip patch array antenna for the indoor wideband code division multiple access (WCDMA) repeater applications. One approach is to construct the single-feed switchable feed network structure with an MS/NRI coupled-line coupler in order to reduce the mutual coupling level between antennas. Another approach is to insert the soft surface unit cells near the edges of the microstrip patch elements in order to reduce backward radiation waves. In order to further improve the isolation level, the server antenna and donor antenna are installedinorthogonal direction. The fabricated antenna exhibits a gain over 7 dBi and higher isolation level between server and donor antennas below −70 dB at WCDMA band.


Author(s):  
Juhi K. Baruah ◽  
Sivaranjan Goswami ◽  
Kandarpa Kumar Sarma ◽  
Nikos E. Mastorakis

The paper proposes a work of four element in a 2×2 grid fashioned with E-shaped microstrip patch antenna with corporate fed .The paper compares the proposed design with four elements with a single element and a 2 element array design.All the three antenna designs use E shaped microstrip patch as an element. The design of the grid is achieved through the design of a single element, the design of a 1×2 array and finally the design of the 2×2 grid on an FR4 epoxy substrate of thickness 1.5 mm. A corporate feed network of microstrip lines is used to excite the array. The performance of each stage is studied in terms of the return loss parameter, the far field gain, and the beam-widths are observed in each case from simulation results. The resonant frequency in each case is 3.8 GHz. Through comparision of simulation results the paper shows that as the number of elements is increased, the beam-width reduces. In other words, the directivity is increased. Further, it is also observed that the gain and bandwidth is the minimum for the single patch, followed by that of the 1×2 array and the maximum for the 2×2 grid. Thus,it is ssen that the proposed four element antenna with corporate feeding performs better as compared to antennas with either only single patch element or two element array. The construction of the grid leads to increase in gain, bandwidth and directivity of the antenna.


Author(s):  
Mehdi Hasan Chowdhury ◽  
Quazi Delwar Hossain ◽  
Md. Azad Hossain ◽  
Ray Chak Chung Cheung

<p>In this paper, the development of two novel circularly polarized microstrip antennas is thoroughly explained. These antennas are fed by coaxial feeding technique. One of the primary objectives of the proposed work is to tune the antennas to work in ISM band. This frequency band refers to the internationally recognized radio frequency bandwidth which is to be used explicitly for Industrial, Scientific, and Medical applications. Therefore, these antennas would be suitable to use in the field of wireless biotelemetry. Two new antenna design techniques have been introduced to produce circular polarization, and details of these schemes are described. The proposed microstrip antennas are designed and simulated on Advanced Design System (ADS) software. The return loss of the proposed crescent-cut antenna is -19.3 dB at the operating frequency. The extended corner antenna has the return loss of -29.3 dB at the tuned frequency. The simulation results are also presented and discussed.</p>


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Roberto Vincenti Gatti ◽  
Riccardo Rossi ◽  
Marco Dionigi

In this work, the issue of limited bandwidth typical of microstrip antennas realized on a single thin substrate is addressed. A simple yet effective design approach is proposed based on the combination of traditional single-resonance patch geometries. Two novel shaped microstrip patch antenna elements with an inset feed are presented. Despite being printed on a single-layer substrate with reduced thickness, both radiators are characterized by a broadband behavior. The antennas are prototyped with a low-cost and fast manufacturing process, and measured results validate the simulations. State-of-the-art performance is obtained when compared to the existing literature, with measured fractional bandwidths of 3.71% and 6.12% around 10 GHz on a 0.508-mm-thick Teflon-based substrate. The small feeding line width could be an appealing feature whenever such radiating elements are to be used in array configurations.


Sign in / Sign up

Export Citation Format

Share Document