Chlorogenic Acid Suppresses miR‐155 and Ameliorates Ulcerative Colitis through the NF‐κB/NLRP3 Inflammasome Pathway

2020 ◽  
Vol 64 (23) ◽  
pp. 2000452 ◽  
Author(s):  
Junhao Zeng ◽  
Dengqing Zhang ◽  
Xiaoyu Wan ◽  
Yuanling Bai ◽  
Chengfu Yuan ◽  
...  
2018 ◽  
Vol 315 (6) ◽  
pp. G909-G920 ◽  
Author(s):  
Lanju Wang ◽  
Yaohui Wang ◽  
Zhenfeng Wang ◽  
Yu Qi ◽  
Beibei Zong ◽  
...  

Growth differentiation factor 11 (GDF11) has an anti-inflammatory effect in the mouse model of atherosclerosis and Alzheimer's disease, but how GDF11 regulates intestinal inflammation during ulcerative colitis (UC) is poorly defined. The Nod-like receptor family pyrin domain-1 containing 3 (NLRP3) inflammasome is closely associated with intestinal inflammation because of its ability to increase IL-1β secretion. Our aim is to determine whether GDF11 has an effect on attenuating experimental colitis in mice. In this study, using a dextran sodium sulfate (DSS)-induced acute colitis mouse model, we reported that GDF11 treatment attenuated loss of body weight, the severity of the disease activity index, shortening of the colon, and histological changes in the colon. GDF11 remarkably suppressed IL-1β secretion and NLRP3 inflammasome activation in colon samples and RAW 264.7 cells, such as the levels of NLRP3 and activated caspase-1. Furthermore, we found that GDF11 inhibited NLRP3 inflammasome activation by downregulating the Toll-like receptor 4/NF-κB p65 pathway and reactive oxygen species production via the typical Smad2/3 pathway. Thus, our research shows that GDF11 alleviates DSS-induced colitis by inhibiting NLRP3 inflammasome activation, providing some basis for its potential use in the treatment of UC. NEW & NOTEWORTHY Here, we identify a new role for growth differentiation factor 11 (GDF11), which ameliorates dextran sodium sulfate-induced acute colitis. Meanwhile, we discover a new phenomenon of GDF11 inhibiting IL-1β secretion and Nod-like receptor family pyrin domain-1 containing 3 (NLRP3) inflammasome activation. These findings reveal that GDF11 is a new potential candidate for the treatment of ulcerative colitis patients with a hyperactive NLRP3 inflammasome.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Huixia Qiao ◽  
Yahui Huang ◽  
Xiaoyan Chen ◽  
Long Yang ◽  
Yue Wang ◽  
...  

Purpose. Jiaweishaoyao decoction (JWSYD) is a traditional prescription of Chinese medicine that is initially used for the treatment of diarrhea. This study is aimed at investigating the effects of JWSYD on DSS-induced ulcerative colitis (UC). Methods. DSS-induced UC mice and LPS-induced RAW264.7 cells were used as the UC model in vivo and in vitro. UC was assessed by body weight, disease activity index (DAI), colon length, spleen weight, and histopathological score (HE staining). The levels of TNF-α, IL-1β, and IL-6 were analyzed by ELISA and qRT-PCR. The levels of NLRP3 inflammasome- and NF-κB pathway-associated proteins were measured by western blot. Results. JWSYD alleviated DSS-induced UC in respect to body weight, DAI, colon length, spleen weight, and histopathological score. JWSYD reduced the levels of TNF-α, IL-1β, and IL-6 in DSS-induced UC mice and the supernatants of LPS-induced RAW264.7 cells. JWSYD suppressed the protein levels of inflammasome-associated proteins, including NLRP3, ASC1, Procaspase-1, Cleaved caspase-1, and Cleaved IL-1β in DSS-induced UC mice and LPS-induced RAW264.7 cells. In addition, JWSYD suppressed the NF-κB pathway in vitro and in vivo. Conclusion. JWSYD alleviated DSS-induced UC via inhibiting the NLRP3 inflammasome and NF-κB pathway.


2020 ◽  
Vol 108 (1) ◽  
pp. 283-295 ◽  
Author(s):  
Run Cao ◽  
Yuting Ma ◽  
Shaowei Li ◽  
Donghai Shen ◽  
Shuang Yang ◽  
...  

2021 ◽  
Vol 101 ◽  
pp. 108174
Author(s):  
Heba M. Hafez ◽  
Mohamed A. Ibrahim ◽  
Walaa Yehia Abdelzaher ◽  
Alyaa A. Gad ◽  
Sara Mohammed Naguib Abdel Hafez ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Ma Fangxiao ◽  
Ke Yifan ◽  
Zhong Jihong ◽  
Shen Yan ◽  
Liu Yingchao

Objective. To explore the effect of Tripterygium wilfordii polycoride (TWP) on the NADPH oxidases (NOXs)-reactive oxygen species (ROS)-NOD-like receptor protein 3 (NLRP3) inflammasome signaling pathway and the possibility of using TWP to treat ulcerative colitis (UC). Methods. BALB/c mice were randomly divided into five groups: model control, low TWP, middle TWP, high TWP, and normal control groups. A UC model was established with dextran sulfate sodium. The determination of ROS was carried out by using the fluorescent probe DCFH-DA, and NOXs activity was detected based on the NADPH consumption rate. The mRNA expression levels of NLRP3, ASC, and caspase-1 in the colon tissues and neutrophils were assessed via real-time PCR. Results. The colon tissues were abnormal with different degrees in TWP groups with disease activity index and histopathological scores lower than those in the model group. In TWP groups, ROS generation, NOXs activity, and the mRNA expression levels of NLRP3, ASC, and caspase-1 in the colon tissues and colon-isolated neutrophils were remarkably lower than those in the model control group (P<0.05) and higher than those in the normal group (P<0.05). The results of pairwise comparison for the efficacy of TWP administration showed that the above indexes were statistically significant with the lowest expression in the high TWP group (P<0.05) and the highest expression in the low TWP group (P<0.05). Conclusion. TWP demonstrated anti-inflammatory effects on UC by decreasing the expression of proinflammatory factors in the NOXs-ROS-NLRP3 signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document