Curcumin Reduces Adipose Tissue Inflammation and Alters Gut Microbiota in Diet‐Induced Obese Male Mice

2021 ◽  
pp. 2100274
Author(s):  
Tariful Islam ◽  
Iurii Koboziev ◽  
Kembra Albracht‐Schulte ◽  
Brandon Mistretta ◽  
Shane Scoggin ◽  
...  
2020 ◽  
Vol 150 (11) ◽  
pp. 2950-2960
Author(s):  
Weimin Guo ◽  
Dayong Wu ◽  
Maria C Dao ◽  
Lijun Li ◽  
Erin D Lewis ◽  
...  

ABSTRACT Background Epidemiological studies suggest that higher fruits and vegetables (F&V) consumption correlates with reduced risk of hepatic steatosis, yet evidence for causality and the underlying mechanisms is lacking. Objectives We aimed to determine the causal relation between F&V consumption and improved metabolic disorders in mice fed high-fat (HF) (Experiment-1) or normal-fat (Experiment-2) diets and its underlying mechanisms. Methods Six-week-old male C57BL/6J mice were randomly grouped and fed diets supplemented at 0%–15% (wt:wt) with a freeze-dried powder composed of 24 commonly consumed F&V (human equivalent of 0–9 servings/d) for 20 wk. In Experiment-1, mice were fed an HF (45% kcal fat) diet with 0% (HF0), 5%, 10%, or 15% (HF15) F&V or a matched low-fat control diet (10% kcal fat). In Experiment-2, mice were fed an AIN-93 diet (basal) (B, 16% kcal fat) with 0% (B0), 5%, 10%, or 15% (B15) F&V supplementation. Body weight and composition, food intake, hepatic steatosis, inflammation, ceramide levels, sphingomyelinase activity, and gut microbiota were assessed. Results In Experiment-1, mice fed the HF15 diet had lower weight gain (17.9%), hepatic steatosis (48.4%), adipose tissue inflammation, blood (24.6%) and liver (33.9%) ceramide concentrations, and sphingomyelinase activity (38.8%) than HF0 mice (P < 0.05 for all). In Experiment-2, mice fed the B15 diet had no significant changes in weight gain but showed less hepatic steatosis (28.5%), blood and adipose tissue inflammation, and lower blood (30.0%) ceramide concentrations than B0 mice (P < 0.05 for all). These F&V effects were associated with favorable microbiota changes. Conclusions These findings represent the first evidence for a causal role of high F&V intake in mitigating hepatic steatosis in mice. These beneficial effects may be mediated through changes in ceramide and/or gut microbiota, and suggest that higher than currently recommended servings of F&V may be needed to achieve maximum health benefits.


Obesity ◽  
2015 ◽  
Vol 23 (3) ◽  
pp. 581-590 ◽  
Author(s):  
Satu Pekkala ◽  
Eveliina Munukka ◽  
Lingjia Kong ◽  
Eija Pöllänen ◽  
Reija Autio ◽  
...  

2017 ◽  
Vol 313 (4) ◽  
pp. E450-E462 ◽  
Author(s):  
Claes Ohlsson ◽  
Ann Hammarstedt ◽  
Liesbeth Vandenput ◽  
Niina Saarinen ◽  
Henrik Ryberg ◽  
...  

Females are, in general, more insulin sensitive than males. To investigate whether this is a direct effect of sex-steroids (SS) in white adipose tissue (WAT), we developed a male mouse model overexpressing the aromatase enzyme, converting testosterone (T) to estradiol (E2), specifically in WAT (Ap2-arom mice). Adipose tissue E2 levels were increased while circulating SS levels were unaffected in male Ap2-arom mice. Importantly, male Ap2-arom mice were more insulin sensitive compared with WT mice and exhibited increased serum adiponectin levels and upregulated expression of Glut4 and Irs1 in WAT. The expression of markers of macrophages and immune cell infiltration was markedly decreased in WAT of male Ap2-arom mice. The adipogenesis was enhanced in male Ap2-arom mice, supported by elevated Pparg expression in WAT and enhanced differentiation of preadipocyte into mature adipocytes. In summary, increased adipose tissue aromatase activity reduces adipose tissue inflammation and improves insulin sensitivity in male mice. We propose that estrogen increases insulin sensitivity via a local effect in WAT on adiponectin expression, adipose tissue inflammation, and adipogenesis.


Endocrinology ◽  
2016 ◽  
Vol 157 (11) ◽  
pp. 4246-4256 ◽  
Author(s):  
Maria Z. Alfaradhi ◽  
Laura C. Kusinski ◽  
Denise S. Fernandez-Twinn ◽  
Lucas C. Pantaleão ◽  
Sarah K. Carr ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Valeriy A. Poroyko ◽  
Alba Carreras ◽  
Abdelnaby Khalyfa ◽  
Ahamed A. Khalyfa ◽  
Vanessa Leone ◽  
...  

2020 ◽  
Vol 134 (12) ◽  
pp. 1403-1432 ◽  
Author(s):  
Manal Muin Fardoun ◽  
Dina Maaliki ◽  
Nabil Halabi ◽  
Rabah Iratni ◽  
Alessandra Bitto ◽  
...  

Abstract Flavonoids are polyphenolic compounds naturally occurring in fruits and vegetables, in addition to beverages such as tea and coffee. Flavonoids are emerging as potent therapeutic agents for cardiovascular as well as metabolic diseases. Several studies corroborated an inverse relationship between flavonoid consumption and cardiovascular disease (CVD) or adipose tissue inflammation (ATI). Flavonoids exert their anti-atherogenic effects by increasing nitric oxide (NO), reducing reactive oxygen species (ROS), and decreasing pro-inflammatory cytokines. In addition, flavonoids alleviate ATI by decreasing triglyceride and cholesterol levels, as well as by attenuating inflammatory mediators. Furthermore, flavonoids inhibit synthesis of fatty acids and promote their oxidation. In this review, we discuss the effect of the main classes of flavonoids, namely flavones, flavonols, flavanols, flavanones, anthocyanins, and isoflavones, on atherosclerosis and ATI. In addition, we dissect the underlying molecular and cellular mechanisms of action for these flavonoids. We conclude by supporting the potential benefit for flavonoids in the management or treatment of CVD; yet, we call for more robust clinical studies for safety and pharmacokinetic values.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1212-P ◽  
Author(s):  
JURAJ KOSKA ◽  
TRACY OSREDKAR ◽  
D'SOUZA KAREN ◽  
SANDEEP SINHA ◽  
CHRISTIAN MEYER ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document