A low cost miniaturized circularly polarized antenna for UHF radio frequency identification reader applications

2009 ◽  
Vol 51 (10) ◽  
pp. 2382-2384 ◽  
Author(s):  
Zhongbao Wang ◽  
Shaojun Fang ◽  
Shiqiang Fu

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Enze Zhang ◽  
Andrea Michel ◽  
Paolo Nepa ◽  
Jinghui Qiu

A compact, low-profile, two-port dual-band circularly polarized (CP) stacked patch antenna for radio-frequency identification (RFID) multiple-input-multiple-output (MIMO) readers is proposed, which employs the shared-aperture technique. The proposed antenna adopts a 1.524 mm thickness Rogers Ro4350b substrate with relative permittivity of 3.48. Two pairs of isolated ports are working at two microwave- (MW-) RFID bands (2.4–2.485 GHz and 5.725–5.875 GHz) with high port isolation of 25 dB and 30 dB, respectively. A shared metal slot layer is designed to separate two feeding structures of the lower band and upper band for port isolation enhancement as well as saving space. Corner-truncated square slot and patch configurations have been designed to obtain CP modes. In the lower and upper MW-RFID bands, the relative impedance bandwidths are 12.2% and 5.7%, and the maximum realized gains are higher than 7.3 dBic. Moreover, two-element configurations have been combined for an RFID MIMO system that occupies a dimension of 119 mm × 119 mm × 12.9 mm. The MIMO antenna performance of envelope correlation coefficient (ECC) is lower than 0.03, and diversity gain is close to 10 dB.





Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2116
Author(s):  
Wazie M. Abdulkawi ◽  
Khaled Issa ◽  
Abdel-Fattah A. Sheta ◽  
Saleh A. Alshebeili

There is a growing interest in chipless radio-frequency identification (RFID) technology for a number of Internet of things (IoT) applications. This is due to its advantages of being of low-cost, low-power, and fully printable. In addition, it enjoys ease of implementation. In this paper, we present a novel, compact, chipless radio-frequency identification (RFID) tag that can be read with either vertical or horizontal polarization within its frequency bandwidth. This increases the sturdiness and detection ability of the RFID system. In addition, the difference between the vertical and horizontal responses can be used for tag identification. The proposed tag uses strip length variations to double the coding capacity and thereby reduce the overall size by almost 50%. It has a coding capacity of 20 bits in the operating bandwidth 3 GHz–7.5 GHz, and its spatial density is approximately 11 bits/cm2. The proposed tag has a 4.44 bits/GHz spectral capacity, 2.44 bits/cm2/GHz encoding capacity, a spatial density at the center frequency of 358.33 bits/λ2, and an encoding capacity at the center frequency of 79.63 bits/λ2/GHz. A prototype is fabricated and experimentally tested at a distance of 10 cm from the RFID reader system. Then, we compare the measured results with the simulations. The simulated results are in reasonable agreement with the simulated ones.



2013 ◽  
Vol 303-306 ◽  
pp. 2207-2210 ◽  
Author(s):  
Ming Li ◽  
Zhao Peng Dai ◽  
Fang Xi

In order to overcome the high complexity of the tag in RFID, a new XOR scheme is proposed based on the relationship between X and Z for X XOR (X + On) =Z. As only XOR and random number generator are required to be computed by tags,it is very suitable for low—cost Radio Frequency Identification(RFID) system .



Sign in / Sign up

Export Citation Format

Share Document