A circularly polarized , high aperture efficiency metasurface antenna

Author(s):  
Mostafa Khanjarian ◽  
Mohammad Soleimani ◽  
Vahid Nayyeri ◽  
Mohamed El Badawe ◽  
Seyyedeh‐Fahimeh Babazadeh ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Xinyu Da ◽  
Jialiang Wu ◽  
Jing Zhao ◽  
Lin Baoqin ◽  
Kai Wu

A circularly polarized broadband low-cost reflectarray in Ku-band is presented using a novel single-layer subwavelength phase-shifting element. The proposed subwavelength element consists of the concentric split ring and the crossed bowtie. The linear reflected phase response curve with 360° phase coverage is obtained. For experimental verification, an array of 25 × 25 reflectarray prototype has been designed and manufactured by employing the angular rotation technique. The measurements are in good agreement with the simulations. The measured gain at the center frequency of 12.5 GHz is 26.6 dBi, corresponding to the aperture efficiency of 52.5%, and the 1 dB gain bandwidth is 26.4%.


2015 ◽  
Vol 63 (7) ◽  
pp. 3317-3320 ◽  
Author(s):  
Ruyuan Deng ◽  
Yilin Mao ◽  
Shenheng Xu ◽  
Fan Yang

Author(s):  
Marcos F. Maestre

Recently we have developed a form of polarization microscopy that forms images using optical properties that have previously been limited to macroscopic samples. This has given us a new window into the distribution of structure on a microscopic scale. We have coined the name differential polarization microscopy to identify the images obtained that are due to certain polarization dependent effects. Differential polarization microscopy has its origins in various spectroscopic techniques that have been used to study longer range structures in solution as well as solids. The differential scattering of circularly polarized light has been shown to be dependent on the long range chiral order, both theoretically and experimentally. The same theoretical approach was used to show that images due to differential scattering of circularly polarized light will give images dependent on chiral structures. With large helices (greater than the wavelength of light) the pitch and radius of the helix could be measured directly from these images.


Sign in / Sign up

Export Citation Format

Share Document