scholarly journals Single-Layer Circularly Polarized Wide Band Reflectarray Antenna with High Aperture Efficiency

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Xinyu Da ◽  
Jialiang Wu ◽  
Jing Zhao ◽  
Lin Baoqin ◽  
Kai Wu

A circularly polarized broadband low-cost reflectarray in Ku-band is presented using a novel single-layer subwavelength phase-shifting element. The proposed subwavelength element consists of the concentric split ring and the crossed bowtie. The linear reflected phase response curve with 360° phase coverage is obtained. For experimental verification, an array of 25 × 25 reflectarray prototype has been designed and manufactured by employing the angular rotation technique. The measurements are in good agreement with the simulations. The measured gain at the center frequency of 12.5 GHz is 26.6 dBi, corresponding to the aperture efficiency of 52.5%, and the 1 dB gain bandwidth is 26.4%.

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ting Liu ◽  
Lin Zhang ◽  
Jialiang Wu ◽  
Jing Zhao ◽  
Zhiguo Zeng

Abstract A single-layer wideband high efficiency reflectarray in Ku-band has been presented in this paper. A novel dual-resonant patch element approach has been analyzed and optimized to obtain good radiation performances within the operating frequency band. The phase shift range of 573° can be obtained with less steep linear phase shift curve. To compensate the differential spatial phase delays from the feed to the elements, the variable size technique has been utilized for obtaining required phase shifts. The reflectarray aperture has been designed, manufactured and measured. Measured results are in good agreement with the simulated ones. The measured gain of the reflectarray aperture at center frequency can reach 27.2 dBi, which is equivalent to aperture efficiency of 51.3%, and the 1-dB gain bandwidth of the aperture is 18.4%.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Preet Kaur ◽  
Pravin R. Prajapati

Abstract A bilayer split-ring chiral metamaterial converts the linearly polarized wave, into a nearly perfect left or right-handed circularly polarized wave. The proposed antenna is intended to operate at center frequency of 5.80 GHz with switchable polarization capability. The polarization re-configurability is achieved by electronically switching of two PIN-diode pairs, which are embedded into bilayer split-ring Chiral Metamaterial. The optimized length of rectangular patch is 16 mm and width is 12.1 mm. Two types of radiation characteristics offered by the proposed antenna; left hand circularly polarized in mode 1 and right hand circularly polarized in mode 2. Measured results show that its impedance bandwidth is 155 MHz from 5.70 to 5.855 GHz for both mode 1 and mode 2. The measured axial-ratio bandwidth is 100 MHz from 5.75 to 5.85 GHz for mode 1 and 110 MHz from 5.73 to 5.84 GHz for mode 2. Antenna has LHCP gain of 2.52 dBi and RHCP gain of −23 dBi in mode 1. RHCP gain of 2 dBi and polarization purity of about −20 dBi is obtained in mode 2. The proposed antenna has simple structure, low cost and it has potential application in field of wireless communication (i.e., WiMax, WLAN etc.).


2018 ◽  
Vol 11 (2) ◽  
pp. 182-189 ◽  
Author(s):  
Shilpee Patil ◽  
Anil Kumar Singh ◽  
Binod Kumar Kanaujia ◽  
R. L. Yadava

AbstractThis paper presents a compact microstrip antenna using FR-4 substrate for dual band circularly polarized operation using a modified square ring slot in the ground plane with microstrip line feed. Simulation of the impedance characteristic and radiation characteristic for the proposed antenna is carried out using commercially available HFSS software. The simulated data validate measured results and shows good agreement. Proposed antenna shows an impedance bandwidth (return loss >10 dB) of 50.88% at 5.9 GHz of center frequency and 29.92% at 12.8 GHz of center frequency for lower and upper band, respectively. The 3 dB axial ratio bandwidth for lower and upper band is 26.4 and 3.0%, respectively and measured peak gain for the lower and upper band is found as 3.2 and 3.4 dBic, respectively. The proposed antenna can be suitable for wireless communication in C and Ku bands.


2016 ◽  
Vol 9 (3) ◽  
pp. 685-690 ◽  
Author(s):  
Aparna Kundu ◽  
Ujjal Chakraborty ◽  
Anup Kumar Bhattacharjee

A single-layer coaxial-fed compact rectangular microstrip antenna with very low voltage standing wave ratio (VSWR) is presented in this paper. The simulated VSWR of the proposed antenna 1.00374 is obtained near the center frequency of the operating band (3.5 GHz). Simulation and measurement results indicate that the bandwidth (simulated: 3.36–3.715 GHz, and measured: 3.295–3.645 GHz) of the antenna exceeds 10% below VSWR 2, when the size reduction of the antenna is about 81.6%. The realized peak gain is obtained about 2.15 dBi at 3.5 GHz. For the verification of the computational results, two designs were fabricated and measured. Good agreements between simulated and measured results were found.


Author(s):  
Abdalla Abdelrahman Mohamed ◽  
Bedor Mohammed Khairalla

The capabilities of computer through the methodologies of scientific computing used to solve many manufacturing difficulties of semiconductor materials, across all disciplines, because it is low cost and the availability of resources. In this paper, investigation of unique electronic property of zinc oxide sheet, which can be an attractive semiconductor material for many electronic devices applications, is carried out. The electronic structure of zinc oxide surface and the effect of substituting lithium atoms using CRYSTAL06 code showed that the bulk ZnO band gap ≈ 3.3eV which is in good agreement with experimental results≈3.4eV. After generating slab structure, the band gap has been increased to 5.5eV, exhibiting high resistivity surface. Substituting of lithium to slab has decreased band gap to 4.4eV. The results shows that there is reduction in band-gap and decreases in resistivity, predicting that Small amount of Lithium could change the zinc oxide from wide band semiconductor to half-metal compound.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Haitham AL-Saif ◽  
Muhammad Usman ◽  
Muhammad Tajammal Chughtai ◽  
Jamal Nasir

This paper presents a novel compact 2 × 2 planar MIMO antenna system with ultra-wide band capability. Antenna system is specifically designed to target lower 5th generation operating bands ranging from 2 GHz to 12 GHz. This band also covers the IEEE 802.11 a/b/g/n/ac. The antenna array geometry has been simulated using CST MWS. The design is extremely miniaturized with total structure size of 13×25×0.254 mm3. The simulated and measured results have been presented. Measured and simulated return loss values for designed antenna are less than −10 dB over the operating band and lowest values of −35 dB and −32.5 dB can been seen at 5.2 GHz and 9.2 GHz, respectively, whereas at the center frequency the return loss is −25.2 dB. The mutual coupling between both elements is less than −20 dB over the transmission bandwidth. Simulated and measured radiation patterns in E and H planes at center frequency show nearly isotropic far fields. The maximum gain is measured as 4.8 dB. Promising results of Envelope Correlation Coefficient and gain diversity of the design have been achieved. Simulated and measured results are found in good agreement. The fractional bandwidth of antenna is measured as 143.2% which satisfies its ultra-wide band response.


2021 ◽  
Vol 10 (5) ◽  
pp. 2678-2685
Author(s):  
Anwer Sabah Mekki ◽  
Siba Monther Yousif ◽  
Bashar Mudhafar Ahmed ◽  
Mustafa Mohammed Jawad

In this paper, an end-fire microstrip patch antenna (MPA) is proposed of 3 GHz as a center frequency, designed, simulated, and measured to work on WiMAX frequencies within standard of 802.16e (WiMAX). A high gain ranged between (12.117-13.324) dB, high front to back ratio (F/B) of (35.770) at the center frequency, a wide band of 1.701 GHz, low profile, and semi-ideal voltage standing wave ratio (VSWR) of 1.053 is achieved. The simulation is done using computer simulation technology (CST-MW). The proposed design is based on two Fire-retardant substrates (FR-4) of relative permittivity (ε) 4.3+j0.025 and 1.53 mm thickness for each one, which is considered a high loss material. The measurement results show good agreement with the simulated results. In addition, the design can be used for harvesting power supply from mobile towers. Finally, the proposed design is compared with two other designs in terms of power conversion efficiency and overall size.


Sign in / Sign up

Export Citation Format

Share Document