scholarly journals A method to measure the absorbed dose of the thyroid during I-131 therapy, using a collar detector system and a SPECT acquisition

2017 ◽  
Vol 44 (10) ◽  
pp. 5450-5456 ◽  
Author(s):  
Koen van Gils ◽  
Peter Brinks ◽  
Jules Lavalaye ◽  
Hein J. Verberne ◽  
Jan B. A. Habraken
Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1167 ◽  
Author(s):  
Lancia Hubley ◽  
Jackson Roberts ◽  
Juergen Meyer ◽  
Alicia Moggré ◽  
Steven Marsh

Digital holographic interferometry (DHI) radiation dosimetry has been proposed as an experimental metrology technique for measuring absorbed radiation doses to water with high spatial resolution via noninvasive optical calorimetry. The process involves digitally recording consecutive interference patterns resulting from variations in the refractive index as a function of the radiation-absorbed dose. Experiments conducted on prototype optical systems revealed the approach to be feasible but strongly dependent on environmental-influence quantities and setup configuration. A virtual dosimeter reflecting the prototype was created in a commercial optical modelling package. A number of virtual phantoms were developed to characterize the performance of the dosimeter under ideal conditions and with simulated disruptions in environmental-influence quantities, such as atmospheric and temperature perturbations as well as mechanical vibrations. Investigations into the error response revealed that slow drifts in atmospheric parameters and heat expansion caused the measured dose to vary between measurements, while atmospheric fluctuations and vibration contributed to system noise, significantly lowering the spatial resolution of the detector system. The impact of these effects was found to be largely mitigated with equalisation of the dosimeter’s reference and object path lengths, and by miniaturising the detector. Equalising path lengths resulted in a reduction of 97.5% and 96.9% in dosimetric error introduced by heat expansion and atmospheric drift, respectively, while miniaturisation of the dosimeter was found to reduce its sensitivity to vibrations and atmospheric turbulence by up to 41.7% and 54.5%, respectively. This work represents a novel approach to optical-detector refinement in which metrics from medical imaging were adapted into software and applied to a a virtual-detector system. This methodology was found to be well-suited for the optimization of a digital holographic interferometer.


Author(s):  
J. M. Cowley ◽  
R. Glaisher ◽  
J. A. Lin ◽  
H.-J. Ou

Some of the most important applications of STEM depend on the variety of imaging and diffraction made possible by the versatility of the detector system and the serial nature, of the image acquisition. A special detector system, previously described, has been added to our STEM instrument to allow us to take full advantage of this versatility. In this, the diffraction pattern in the detector plane may be formed on either of two phosphor screens, one with P47 (very fast) phosphor and the other with P20 (high efficiency) phosphor. The light from the phosphor is conveyed through a fiber-optic rod to an image intensifier and TV system and may be photographed, recorded on videotape, or stored digitally on a frame store. The P47 screen has a hole through it to allow electrons to enter a Gatan EELS spectrometer. Recently a modified SEM detector has been added so that high resolution (10Å) imaging with secondary electrons may be used in conjunction with other modes.


Author(s):  
J.M. Cowley

The HB5 STEM instrument at ASU has been modified previously to include an efficient two-dimensional detector incorporating an optical analyser device and also a digital system for the recording of multiple images. The detector system was built to explore a wide range of possibilities including in-line electron holography, the observation and recording of diffraction patterns from very small specimen regions (having diameters as small as 3Å) and the formation of both bright field and dark field images by detection of various portions of the diffraction pattern. Experience in the use of this system has shown that sane of its capabilities are unique and valuable. For other purposes it appears that, while the principles of the operational modes may be verified, the practical applications are limited by the details of the initial design.


2001 ◽  
Vol 40 (01) ◽  
pp. 1-6 ◽  
Author(s):  
M. Zimny ◽  
M. Schreckenberger ◽  
P. Reinartz ◽  
B. Nowak ◽  
E. Ostwald ◽  
...  

Summary Aim of this study was a characterization of radioiodine therapy (RIT) failures in Graves’ disease without simultaneous Carbimazole. Method: 226 patients with a confirmed diagnosis of Graves’ disease received 686.8 ± 376.4 MBq of iodine-131 orally for thyroid ablation. Target dose was 250 Gy. All patients were followed up for 6 months. Therapy failures were compared with successes regarding possible influencing variables initial thyroid volume, thyroid function, immune activity (TRAb), 1-131 uptake, effective half-life, absorbed energy dose, age and gender. Results: 212 of 226 patients (93.8%) were treated successfully, 14 (6.2%) showed a hyperthyroidism relapse within 6 months which required a second radioiodine therapy. A success rate of 92.5% (62/67) could also be achieved with 67 patients who were hyperthyroid at the time of RIT. Compared to the therapy successes, the 14 failures achieved significantly lower absorbed doses (223.8 ±76.6 Gyvs. 285.2 ±82.1 Gy, ρ <0.005), but with no significant differences regarding age, thyroid volume, function or TRAb (all ρ >0.2). Of the 14 failures, η = 8 reached an absorbed dose <200 Gy and η = 1 a dose <250 Gy, although 5 of the failures reached an absorbed dose of >250 Gy. Stepwise logistic regression revealed only absorbed energy dose as a variable significantly influencing therapy success (p <0.005), but no influence of initial thyroid volume, function, TRAb value, age (all ρ >0.2) or gender (p = 0.13). Two-tailed Fisher’s exact test showed no significant influence of gender on success rates (failures/successes: male 1 /36, female 13/176, ρ = 0.48). Conclusions: Except for the absorbed energy dose, no other significant variable influencing the outcome of radioiodine therapy in Graves’ disease without simultaneous Carbimazole could be found. It should be noted, though, that 5 therapy failures (2.2%) reached an absorbed energy dose of >250 Gy.


2006 ◽  
Vol 45 (03) ◽  
pp. 134-138 ◽  
Author(s):  
T. Kull ◽  
N. M. Blumstein ◽  
D. Bunjes ◽  
B. Neumaier ◽  
A. K. Buck ◽  
...  

SummaryAim: For the therapeutic application of radiopharmaceuticals the activity is determined on an individual basis. Here we investigated the accuracy for a simplified assessment of the residence times for a 188Re-labelled anti-CD66 monoclonal antibody. Patients, methods: For 49 patients with high risk leukaemia (24 men, 25 women, age: 44 ± 12 years) the residence times were determined for the injected 188Re-labelled anti-CD66 antibodies (1.3 ± 0.4 GBq, 5–7 GBq/mg protein, >95% 188Re bound to the antibody) based on 5 measurements (1.5, 3, 20, 26, and 44 h p.i.) using planar conjugate view gamma camera images (complete method). In a simplified method the residence times were calculated based on a single measurement 3 h p.i. Results: The residence times for kidneys, liver, red bone marrow, spleen and remainder of body for the complete method were 0.4 ± 0.2 h, 1.9 ± 0.8 h, 7.8 ± 2.1 h, 0.6 ± 0.3 h and 8.6 ± 2.1 h, respectively. For all organs a linear correlation exists between the residence times of the complete method and the simplified method with the slopes (correlation coefficients R > 0.89) of 0.89, 0.99, 1.23, 1.13 and 1.09 for kidneys, liver, red bone marrow, spleen and remainder of body, respectively. Conclusion: The proposed approach allows reliable prediction of biokinetics of 188Re-labelled anti-CD66 monoclonal antibody biodistribution with a single study. Efficient pretherapeutic estimation of organ absorbed dose may be possible, provided that a more stable anti-CD66 antibody preparation is available.


1994 ◽  
Vol 33 (05) ◽  
pp. 206-214 ◽  
Author(s):  
J. Triller ◽  
H. U. Baer ◽  
Livia Geiger ◽  
H. F. Beer ◽  
C. Becker ◽  
...  

SummaryTwenty patients with unresectable hepatocellular carcinoma (HCC) were followed up to 5 years after transarterial radiotherapy with 90Y-resin particles. Diagnostic radioembolizations of 99mTc-macroaggregates facilitated scintigraphic assessment of activity distribution, dose evaluation and final procedural verification. The overall survival rates were 56, 38 and 14% (after 1, 2 and 3 years, resp.). Patients with unifocal HCC and a single feeding artery (n = 7) even presented 83, 67 and 40% (2 alive after 2.75 and 4 years). With multiple arteries (n = 7), the longest survival was 26 months. Patients with multifocal HCC survived up to 33 months after selective radioembolization. Quality of life was improved in all. Survival was positively correlated with absorbed dose but residual/recurrent tumour occurred even after ≥300 Gy. Post-treatment symptoms were minimal (35 applications), pulmonary shunt rates were correctly predicted and pulmonary complications avoided.


Sign in / Sign up

Export Citation Format

Share Document