Three-dimensional BOLD fMRI with spin-echo characteristics usingT2 magnetization preparation and echo-planar readouts

2003 ◽  
Vol 50 (1) ◽  
pp. 132-144 ◽  
Author(s):  
Vincent Denolin ◽  
Thierry Metens
2009 ◽  
Vol 34 (1) ◽  
pp. 37 ◽  
Author(s):  
Said Boujraf ◽  
Paul Summers ◽  
Faouzi Belahsen ◽  
Klaas Prussmann ◽  
Spyros Kollias

2021 ◽  
Author(s):  
Fuyixue Wang ◽  
Zijing Dong ◽  
Lawrence L. Wald ◽  
Jonathan R. Polimeni ◽  
Kawin Setsompop

Spin-echo (SE) BOLD fMRI has high microvascular specificity, but its most common acquisition method, SE-EPI, suffers from T2' contrast contamination with undesirable draining vein bias. To address this, in this study, we extended a recently developed multi-shot EPI technique, Echo-Planar Time-resolved Imaging (EPTI), to laminar SE-fMRI at 7T to obtain pure spin-echo BOLD contrast with minimal T2' contamination for improved specificity. We also developed a framework to simultaneously obtain a series of asymmetric SE (ASE) images with varying T2' weightings, and extracted from the same data equivalent conventional SE multi-shot EPI images with different ETLs, to investigate the T2'-induced macrovascular contribution across the spin-echo readout. A low-rank spatiotemporal subspace reconstruction was implemented for the SE-EPTI acquisition, which incorporates corrections for both shot-to-shot phase variations and dynamic B0 drifts. SE-EPTI was used in a visual task fMRI experiment to demonstrate that i) the pure SE image provided by EPTI results in the highest microvascular specificity; ii) the ASE EPTI image series, with a graded introduction of T2' weightings at time points farther away from the pure SE, show a gradual sensitivity increase accompanied by a larger and larger draining vein bias; iii) a longer ETL in the conventional SE EPI acquisition will induce more draining vein bias. Consistent results were observed across multiple subjects, demonstrating the robustness of the proposed technique for SE-BOLD fMRI with high specificity.


NeuroImage ◽  
2021 ◽  
pp. 118435
Author(s):  
SoHyun Han ◽  
Seulgi Eun ◽  
HyungJoon Cho ◽  
Kâmil Uludaǧ ◽  
Seong-Gi Kim

2021 ◽  
Vol 10 (2) ◽  
pp. 205846012199473
Author(s):  
Takeshi Yoshizako ◽  
Rika Yoshida ◽  
Hiroya Asou ◽  
Megumi Nakamura ◽  
Hajime Kitagaki

Background Echo-planar imaging (EPI)-diffusion-weighted imaging (DWI) may take unclear image affected by susceptibility, geometric distortions and chemical shift artifacts. Purpose To compare the image quality and usefulness of EPI-DWI and turbo spin echo (TSE)-DWI in female patients who required imaging of the pelvis. Material and Methods All 57 patients were examined with a 3.0-T MR scanner. Both TSE- and EPI-DWI were performed with b values of 0 and 1000 s/mm2. We compared geometric distortion, the contrast ratio (CR) of the myometrium to the muscle and the apparent diffusion coefficient (ADC) values for the myometrium and lesion. Two radiologists scored the TSE- and EPI-DWI of each patient for qualitative evaluation. Results The mean percent distortion was significantly smaller with TSE- than EPI-DWI ( p = 0.00). The CR was significantly higher with TSE- than EPI-DWI ( p = 0.003). There was a significant difference in the ADC value for the uterus and lesions between the EPI- and TSE-DWI ( p < 0.05). Finally, the ADC values of cancer were significantly different from those for the uterus and benign with both the two sequences ( p < 0.05). The scores for ghosting artifacts were higher with TSE- than EPI-DWI ( p = 0.019). But there were no significant differences between TSE- and EPI-DWI with regard to image contrast and overall image quality. Conclusion TSE-DWI on the female pelvis by 3T MRI produces less distortion and higher CR than EPI-DWI, but there is no difference in contrast and image quality.


Sign in / Sign up

Export Citation Format

Share Document