scholarly journals Dynamic response of soft poroelastic bed to linear water waves?a boundary layer correction approach

Author(s):  
Ping-Cheng Hsieh ◽  
Liang-Hsiung Huang ◽  
Tsan-Wen Wang
2018 ◽  
Vol 22 (2) ◽  
pp. 789-796 ◽  
Author(s):  
Devendra Kumar ◽  
Jagdev Singh ◽  
Dumitru Baleanu

The article addresses a time-fractional modified Kawahara equation through a fractional derivative with exponential kernel. The Kawahara equation describes the generation of non-linear water-waves in the long-wavelength regime. The numerical solution of the fractional model of modified version of Kawahara equation is derived with the help of iterative scheme and the stability of applied technique is established. In order to demonstrate the usability and effectiveness of the new fractional derivative to describe water-waves in the long-wavelength regime, numerical results are presented graphically.


1994 ◽  
Vol 10 (2) ◽  
pp. 97-102 ◽  
Author(s):  
Chen Yaosong ◽  
Ling Guocan ◽  
Jiang Tao

The mass transport velocity in water waves propagating over an elastic bed is investigated. Water is assumed to be incompressible and slightly viscous. The elastic bed is also incompressible and satisfies the Hooke’s law. For a small amplitude progressive wave perturbation solutions via a boundary-layer approach are obtained. Because the wave amplitude is usually larger than the viscous boundary layer thickness and because the free surface and the interface between water and the elastic bed are moving, an orthogonal curvilinear coordinate system (Longuet-Higgins 1953) is used in the analysis of free surface and interfacial boundary layers so that boundary conditions can be applied on the actual moving surfaces. Analytical solutions for the mass transport velocity inside the boundary layer adjacent to the elastic seabed and in the core region of the water column are obtained. The mass transport velocity above a soft elastic bed could be twice of that over a rigid bed in the shallow water.


2003 ◽  
Vol 56 (2) ◽  
pp. B23-B24
Author(s):  
N Kuznetsov, ◽  
V Maz’ya, ◽  
B Vainberg, ◽  
J Miles,

2013 ◽  
Vol 718 ◽  
pp. 371-397 ◽  
Author(s):  
Erell-Isis Garnier ◽  
Zhenhua Huang ◽  
Chiang C. Mei

AbstractWe analyse theoretically the interaction between water waves and a thin layer of fluid mud on a sloping seabed. Under the assumption of long waves in shallow water, weakly nonlinear and dispersive effects in water are considered. The fluid mud is modelled as a thin layer of viscoelastic continuum. Using the constitutive coefficients of mud samples from two field sites, we examine the interaction of nonlinear waves and the mud motion. The effects of attenuation on harmonic evolution of surface waves are compared for two types of mud with distinct rheological properties. In general mud dissipation is found to damp out surface waves before they reach the shore, as is known in past observations. Similar to the Eulerian current in an oscillatory boundary layer in a Newtonian fluid, a mean displacement in mud is predicted which may lead to local rise of the sea bottom.


Author(s):  
Jian-Fei Lu ◽  
Dong-Sheng Jeng

In this study, a coupled model is proposed to investigate dynamic response of a porous seabed and an offshore pile to ocean wave loadings. Both the offshore pile and the porous seabed are treated as a saturated poro-elastic medium, while the seawater is considered as a conventional acoustic medium. The coupled boundary element model is established by the continuity conditions along the interfaces between the three media. In the system, wave force is considered as an external load and it is evaluated via the wave function expansion method in the context of a linear wave theory. Numerical results show that the increase of the modulus ratio between the pile and the seabed can reduce the horizontal displacement of the pile and the pore pressures of the seabed around the pile. Furthermore, the maximum pore pressure of the seabed usually occurs at the upper part of the seabed around the pile.


Sign in / Sign up

Export Citation Format

Share Document