scholarly journals Modified Kawahara equation within a fractional derivative with non-singular kernel

2018 ◽  
Vol 22 (2) ◽  
pp. 789-796 ◽  
Author(s):  
Devendra Kumar ◽  
Jagdev Singh ◽  
Dumitru Baleanu

The article addresses a time-fractional modified Kawahara equation through a fractional derivative with exponential kernel. The Kawahara equation describes the generation of non-linear water-waves in the long-wavelength regime. The numerical solution of the fractional model of modified version of Kawahara equation is derived with the help of iterative scheme and the stability of applied technique is established. In order to demonstrate the usability and effectiveness of the new fractional derivative to describe water-waves in the long-wavelength regime, numerical results are presented graphically.

Filomat ◽  
2021 ◽  
Vol 35 (6) ◽  
pp. 2023-2042
Author(s):  
Mustafa Dokuyucu ◽  
Hemen Dutta

In this paper, a tumor-immune interaction model has been analyzed via Caputo-Fabrizio fractional derivative operator with exponential kernel. Existence of solution of the model has been established with a fixed-point method and then it demonstrated the uniqueness of solution also. The stability of the model has been analyzed with the help of Hyers-Ulam stability approach and then numerical solution by using the Adam-Basford method. The results are further examined in detail with simulations for different fractional derivative values.


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Jagdev Singh ◽  
Devendra Kumar ◽  
Maysaa Al Qurashi ◽  
Dumitru Baleanu

AbstractIn this article, we present a fractional model of the damped Bergers’ equation associated with the Caputo-Fabrizio fractional derivative. The numerical solution is derived by using the concept of an iterative method. The stability of the applied method is proved by employing the postulate of fixed point. To demonstrate the effectiveness of the used fractional derivative and the iterative method, numerical results are given for distinct values of the order of the fractional derivative.


Author(s):  
P. G. Drazin

ABSTRACTSome aspects of generation of water waves by wind and of turbulence in a heterogeneous fluid may be described by the theory of hydrodynamic stability. The technical difficulties of these problems of instability have led to obscurities in the literature, some of which are elucidated in this paper. The stability equation for a basic steady parallel horizontal flow under the influence of gravity is derived carefully, the undisturbed fluid having vertical variations of density and viscosity. Methods of solution of the equation for large Reynolds numbers and for long-wave disturbances are described. These methods are applied to simple models of wind blowing over water and of fresh water flowing over salt water.


Author(s):  
Mohamed M. Khader

AbstractThis paper is devoted to introduce a numerical treatment using the generalized Adams-Bashforth-Moulton method for some of the variable-order fractional modeling dynamics problems, such as Riccati and Logistic differential equations. The fractional derivative is described in Caputo variable-order fractional sense. The obtained numerical results of the proposed models show the simplicity and efficiency of the proposed method. Moreover, the convergence order of the method is also estimated numerically.


The method of multiple scales is used to examine the slow modulation of a harmonic wave moving over the surface of a two dimensional channel. The flow is assumed inviscid and incompressible, but the basic flow takes the form of an arbitrary shear. The appropriate nonlinear Schrödinger equation is derived with coefficients that depend, in a complicated way, on the shear. It is shown that this equation agrees with previous work for the case of no shear; it also agrees in the long wave limit with the appropriate short wave limit of the Korteweg-de Vries equation, the shear being arbitrary. Finally, it is remarked that the stability of Stokes waves over any shear can be examined by using the results derived here.


Author(s):  
Audrey Rizzo ◽  
Xavier Moreau ◽  
Alain Oustaloup ◽  
Vincent Hernette

In a vibration isolation context, fractional derivative can be used to design suspensions which allow to obtain similar performances in spite of parameters uncertainties. This paper presents the synthesis and the achievement of a new Hydractive CRONE suspension system. After the study of the different constraint in suspension in the first paper, the ideal transfer function of the hydractive CRONE suspension is created and simulated in different case. Then a method to determine the technological parameters is proposed. A parallel arrangement of dissipative and capacitive components and a gamma arrangement are compared. They lead to the same unusual performances: the stability degree robustness and the rapidity robustness.


Sign in / Sign up

Export Citation Format

Share Document