Shape optimization in frictionless contact problems

1994 ◽  
Vol 37 (13) ◽  
pp. 2311-2335 ◽  
Author(s):  
Eduardo A. Fancello ◽  
Raúl A. Feijóo
Author(s):  
Gustavo C. Buscaglia ◽  
Ricardo Dur�n ◽  
Eduardo A. Fancello ◽  
Ra�l A. Feij�o ◽  
Claudio Padra

1975 ◽  
Vol 42 (1) ◽  
pp. 136-140 ◽  
Author(s):  
M. B. Civelek ◽  
F. Erdogan

The paper presents a technique for solving the plane frictionless contact problems in the presence of gravity and/or uniform clamping pressure. The technique is described by applying it to a simple problem of lifting of an elastic layer lying on a horizontal, rigid, frictionless subspace by means of a concentrated vertical load. First, the problem of continuous contact is considered and the critical value of the load corresponding to the initiation of interface separation is determined. Then the mixed boundary-value problem of discontinuous contact is formulated in terms of a singular integral equation by closely following a technique developed for crack problems. The numerical results include the contact stress distribution and the length of separation region. One of the main conclusions of the study is that neither the separation length nor the contact stresses are dependent on the elastic constants of the layer.


1982 ◽  
Vol 18 (2) ◽  
pp. 245-257 ◽  
Author(s):  
Faten Faheem Mahmoud ◽  
Nicholas J. Salamon ◽  
Walter R. Marks

1970 ◽  
Vol 37 (4) ◽  
pp. 965-970 ◽  
Author(s):  
J. Dundurs ◽  
M. Stippes

The dependence of stresses on the elastic constants is explored in frictionless contact problems principally for the case when the contacting bodies are made of the same material and the deformations are induced by prescribed surface tractions. The strongest results can be obtained for problems with contacts that either recede or remain stationary upon loading. In such problems, the stresses are proportional to the applied tractions and the extent of contact is independent of the level of loading. Furthermore, it is shown that the Michell result regarding the dependence of stresses on Poisson’s ratio carries over to plane contact problems with receding and stationary contacts. In three and two-dimensional problems with advancing contacts, it is possible to establish certain rules for scaling displacements and stresses.


2011 ◽  
Vol 105-107 ◽  
pp. 386-391 ◽  
Author(s):  
Jan Szweda ◽  
Zdenek Poruba

In this paper is discussed the way of suitable numerical solution of contact shape optimization problem. The first part of the paper is focused on method of global optimization field among which the genetic algorithm is chosen for computer processing and for application on contact problem optimization. The brief description of this method is done with emphasis of its characteristic features. The experiment performed on plane structural problem validates the ability of genetic algorithm in search the area of the global optimum. On the base of the research described in this work, it is possible to recommend optimization technique of genetic algorithm to use for shape optimization of engineering contact problems in which it is possible for any shape to achieve successful convergence of contact task solution.


Sign in / Sign up

Export Citation Format

Share Document