computational methodology
Recently Published Documents


TOTAL DOCUMENTS

234
(FIVE YEARS 54)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Vol 41 (2) ◽  
pp. 811-828
Author(s):  
Masood Ahmad ◽  
Jehad F. Al-Amri ◽  
Ahmad F. Subahi ◽  
Sabita Khatri ◽  
Adil Hussain Seh ◽  
...  

2021 ◽  
pp. 1-24
Author(s):  
Chun Yui Wong ◽  
Pranay Seshadri ◽  
Ashley Scillitoe ◽  
Andrew Duncan ◽  
Geoffrey T. Parks

Abstract Blades manufactured through flank and point milling will likely exhibit geometric variability. Gauging the aerodynamic repercussions of such variability, prior to manufacturing a component, is challenging enough, let alone trying to predict what the amplified impact of any in-service degradation will be. While rules of thumb that govern the tolerance band can be devised based on expected boundary layer characteristics at known regions and levels of degradation, it remains a challenge to translate these insights into quantitative bounds for manufacturing. In this work, we tackle this challenge by leveraging ideas from dimension reduction to construct low-dimensional representations of aerodynamic performance metrics. These low-dimensional models can identify a subspace which contains designs that are invariant in performance -- the inactive subspace. By sampling within this subspace, we design techniques for drafting manufacturing tolerances and for quantifying whether a scanned component should be used or scrapped. We introduce the blade envelope as a computational manufacturing guide for a blade. In this paper, the first of two parts, we discuss its underlying concept and detail its computational methodology, assuming one is interested only in the single objective of ensuring that the loss of all manufactured blades remains constant. To demonstrate the utility of our ideas we devise a series of computational experiments with the Von Karman Institute's LS89 turbine blade.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Coral Fustero-Torre ◽  
María José Jiménez-Santos ◽  
Santiago García-Martín ◽  
Carlos Carretero-Puche ◽  
Luis García-Jimeno ◽  
...  

AbstractWe present Beyondcell, a computational methodology for identifying tumour cell subpopulations with distinct drug responses in single-cell RNA-seq data and proposing cancer-specific treatments. Our method calculates an enrichment score in a collection of drug signatures, delineating therapeutic clusters (TCs) within cellular populations. Additionally, Beyondcell determines the therapeutic differences among cell populations and generates a prioritised sensitivity-based ranking in order to guide drug selection. We performed Beyondcell analysis in five single-cell datasets and demonstrated that TCs can be exploited to target malignant cells both in cancer cell lines and tumour patients. Beyondcell is available at: https://gitlab.com/bu_cnio/beyondcell.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2241
Author(s):  
Mirosław Jabłoński

Using a fairly structurally flexible and, therefore, very suitable for this type of research, superphane molecule, we demonstrate that the inclusion of a noble gas atom (Ng = He, Ne, Ar, and Kr) inside it and, thus, the formation of the Ng@superphane endohedral complex, leads to its ‘swelling’. Positive values of both the binding and strain energies prove that encapsulation and in turn ‘swelling’ of the superphane molecule is energetically unfavorable and that the Ng⋯C interactions in the interior of the cage are destabilizing, i.e., repulsive. Additionally, negative Mayer Bond Orders indicate the antibonding nature of Ng⋯C contacts. This result in combination with the observed Ng⋯C bond paths shows that the presence of a bond path in the molecular graph does not necessarily prove interatomic stabilization. It is shown that the obtained conclusions do not depend on the computational methodology, i.e., the method and the basis set used. However, on the contrary, the number of bond paths may depend on the methodology. This is yet another disadvantageous finding that does not favor the treatment of bond paths on molecular graphs as indicators of chemical bonds. The Kr@superphane endohedral complex features one of the longest C–C bonds ever reported (1.753 Å).


2021 ◽  
Vol 127 ◽  
pp. 103700
Author(s):  
Sheida Shahi ◽  
Patryk Wozniczka ◽  
Chris Rausch ◽  
Ian Trudeau ◽  
Carl Haas

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
HamidReza Tamaddon Jahromi ◽  
Samuel Rolland ◽  
Jason Jones ◽  
Alberto Coccarelli ◽  
Igor Sazonov ◽  
...  

Purpose A novel modelling approach is proposed to study ozone distribution and destruction in indoor spaces. The level of ozone gas concentration in the air, confined within an indoor space during an ozone-based disinfection process, is analysed. The purpose of this work is to investigate how ozone is distributed in time within an enclosed space. Design/methodology/approach A computational methodology for predicting the space- and time-dependent ozone concentration within the room across the consecutive steps of the disinfection process (generation, dwelling and destruction modes) is proposed. The emission and removal of ozone from the air volume are possible by means of a generator located in the middle of the room. This model also accounts for ozone reactions and decay kinetics, and gravity effect on the air. Finding This work is validated against experimental measurements at different locations in the room during the disinfection cycle. The numerical results are in good agreement with the experimental data. This comparison proves that the presented methodology is able to provide accurate predictions of the time evolution of ozone concentration at different locations of the enclosed space. Originality/value This study introduces a novel computational methodology describing solute transport by turbulent flow for predicting the level of ozone concentration within a closed room during a COVID-19 disinfection process. A parametric study is carried out to evaluate the impact of system settings on the time variation of ozone concentration within the space considered.


2021 ◽  
Vol 9 (5) ◽  
pp. 470
Author(s):  
Filippo Cucinotta ◽  
Dario Mancini ◽  
Felice Sfravara ◽  
Francesco Tamburrino

The use of ventilated hulls is rapidly expanding. However, experimental and numerical analyses are still very limited, particularly for high-speed vessels and for stepped planing hulls. In this work, the authors present a comparison between towing tank tests and CFD analyses carried out on a single-stepped planing hull provided with forced ventilation on the bottom. The boat has identical geometries to those presented by the authors in other works, but with the addition of longitudinal rails. In particular, the study addresses the effect of the rails on the bottom of the hull, in terms of drag, and the wetted surface assessment. The computational methodology is based on URANS equation with multiphase models for high-resolution interface capture between air and water. The tests have been performed varying seven velocities and six airflow rates and the no-air injection condition. Compared to flat-bottomed hulls, a higher incidence of numerical ventilation and air–water mixing effects was observed. At the same time, no major differences were noted in terms of the ability to drag the flow aft at low speeds. Results in terms of drag reduction, wetted surface, and its shape are discussed.


Sign in / Sign up

Export Citation Format

Share Document