Polycaprolactone–poly(ethylene glycol) block copolymer, I: synthesis and degradability in vitro

1993 ◽  
Vol 4 (6) ◽  
pp. 363-366 ◽  
Author(s):  
Wang Shen-Guo ◽  
Qiu Bo
2018 ◽  
Vol 47 (3) ◽  
pp. 426-432 ◽  
Author(s):  
Sivan Yogev ◽  
Ayelet Shabtay-Orbach ◽  
Abraham Nyska ◽  
Boaz Mizrahi

Thermoresponsive materials have the ability to respond to a small change in temperature—a property that makes them useful in a wide range of applications and medical devices. Although very promising, there is only little conclusive data about the cytotoxicity and tissue toxicity of these materials. This work studied the biocompatibility of three Food and Drug Administration approved thermoresponsive polymers: poly( N-isopropyl acrylamide), poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) tri-block copolymer, and poly(lactic acid-co-glycolic acid) and poly(ethylene glycol) tri-block copolymer. Fibroblast NIH 3T3 and HaCaT keratinocyte cells were used for the cytotoxicity testing and a mouse model for the in vivo evaluation. In vivo results generally showed similar trends as the results seen in vitro, with all tested materials presenting a satisfactory biocompatibility in vivo. pNIPAM, however, showed the highest toxicity both in vitro and in vivo, which was explained by the release of harmful monomers and impurities. More data focusing on the biocompatibility of novel thermoresponsive biomaterials will facilitate the use of existing and future medical devices.


2013 ◽  
Vol 66 (12) ◽  
pp. 1576 ◽  
Author(s):  
Gejun Ma ◽  
Deshan Li ◽  
Ji Wang ◽  
Xuefei Zhang ◽  
Haoyu Tang

A biodegradable amphiphilic block copolymer of methoxy poly(ethylene glycol)-block-poly(ϵ-caprolactone) bearing pendant aldehyde groups was synthesised by a combination of ring-opening polymerisation and thio-bromo ‘click’ chemistry. The free aldehyde groups on the copolymer were reacted with hydrophobic payloads (p-methoxylaniline as a model drug) by a benzoic–imine linker, which was responsive to pH change. NMR, FTIR, and gel permeation chromatography analysis confirmed the copolymer structures. In vitro release studies revealed that under acid stimulus, hydrolysis of the benzoic–imine bond resulted in a rapid drug release. This new amphiphilic block copolymer is expected to have promising applications in biodegradable controlled drug delivery systems.


2004 ◽  
Vol 5 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Johnna S. Temenoff ◽  
Hansoo Park ◽  
Esmaiel Jabbari ◽  
Daniel E. Conway ◽  
Tiffany L. Sheffield ◽  
...  

Biomaterials ◽  
2004 ◽  
Vol 25 (2) ◽  
pp. 247-258 ◽  
Author(s):  
A.A. Deschamps ◽  
A.A. van Apeldoorn ◽  
H. Hayen ◽  
J.D. de Bruijn ◽  
U. Karst ◽  
...  

1996 ◽  
Vol 11 (2) ◽  
pp. 85-99 ◽  
Author(s):  
Anne De Marre ◽  
Karry Hoste ◽  
Dorine Bruneel ◽  
Etienne Schacht ◽  
Frans De Schryver

Sign in / Sign up

Export Citation Format

Share Document